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FLOCKING AND PATTERN MOTION IN

A MODIFIED CUCKER-SMALE MODEL

Xiang Li, Yicheng Liu, and Jun Wu

Abstract. Self-organizing systems arise very naturally in artificial intel-
ligence, and in physical, biological and social sciences. In this paper, we
modify the classic Cucker-Smale model at both microscopic and macro-
scopic levels by taking the target motion pattern driving forces into con-
sideration. Such target motion pattern driving force functions are prop-
erly defined for the line-shaped motion pattern and the ball-shaped mo-
tion pattern. For the modified Cucker-Smale model with the prescribed
line-shaped motion pattern, we have analytically shown that there is a

flocking pattern with an asymptotic flocking velocity. This is illustrated
by numerical simulations using both symmetric and non-symmetric pair-
wise influence functions. For the modified Cucker-Smale model with the
prescribed ball-shaped motion pattern, our simulations suggest that the
solution also converges to the prescribed motion pattern.

1. Introduction

Recently the study on emerging collective behaviors in multi-agent interac-
tions has gained increasing interest in biology, ecology, robotics and control
theory, as well as sociology and economics ([2], [3], [4], [6], [7], [9], [15], [16],
[17]). Several mathematical models have been proposed ([1, 8, 9, 10]) to charac-
terize the flocking patterns. Among others, the celebrated Cucker-Smale (CS)
model [8] provides a framework to explain the self-organizing behavior in var-
ious complex systems. One criterion guaranteeing flocking is that the slowly
decaying influence function should have a diverging tail [14].

One essential property of flocking is that the agents all have the same ve-
locity. However, there is no description of the motion patterns or the shape of
the motion. In this work, we incorporate a target motion pattern driving force
function (denoted by F ) into the classic CS model to obtain a modified CS
model. Such specific force functions are given for the cases where the target
motion pattern is line-shaped and ball-shaped, respectively. For the former
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case, we analytically prove that flocking does exist. For the latter case, nu-
merical simulations suggest the flocking also exists, though we do not have an
analytical proof.

The rest of this paper is organized as follows. In Section 2, we introduce a
modified Cucker-Smale model with two different target motion patterns driving
force functions. In Section 3, we analytically prove that there is a flocking
pattern for the modified Cucker-Smale model with the prescribed line-shaped
motion pattern. Numerical simulations are presented in Section 4 to illustrate
our results.

2. A modified CS model

Suppose a self-organizing group has N agents. Each agent i can be charac-
terized by its position xi ∈ R

d and velocity vi ∈ R
d, where d ≥ 1 is an integer.

Then the standard CS model reads as

(1)
d

dt
xi(t) = vi(t),

d

dt
vi(t) = α

∑

j 6=i

aij(x)(vj − vi),

where α measures the interaction strength and x = (x1,x2, . . . ,xN ). The
function aij in [8] takes the following form

(2) aij(x) = I(|xi − xj |)/N,

which is used to quantify the pairwise influence of agent j on the alignment of
agent i. The positive influence function I is strictly monotonically decreasing
with a prototype given by I(r) = (1 + r2)−β for r ≥ 0, where β is a constant.
More pairwise influence functions are considered in literature [14].

Now, we introduce a patterns driving force, say F , to achieve the long-term
motion pattern of the self-organizing group. To this end, the self-organizing
group should “learn” to converge to the final motion patterns. Thus the motion
process should carry the information of the final motion patterns. So we slightly
modify the classic CS model by adding the final motion pattern driving force
function. Then the modified CS model gives as follows:

(3)
d

dt
xi(t) = vi(t),

d

dt
vi(t) = α

∑

j 6=i

aij(x)(vj − vi) + F (xi).

As above, if we incorporate the driving force F into the self-organized sys-
tems, then it determine the final pattern. In fact, we can show that the N -agent
self-organizing system (3) converges to the line-shaped flocking pattern if driv-
ing force F is properly designed by the final line-shaped pattern.

2.1. Line-shaped target motion pattern

In this subsection, we introduce a reasonable F so that all the agents in
the self-organizing system (3) converge to a line-shaped flock. The function F
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takes the form

(4) F (xi(t)) = γ[〈xi(t)− x̄(t), l〉 · l− (xi(t)− x̄(t))], x̄(t) =
1

N

N
∑

i=1

xi(t),

where l is a unit constant vector denoting the desired final motion direction,
γ is a positive constant measuring the force strength, 〈·, ·〉 denotes the inner
product in R

d. x̄(t) formulates the mass center of the self-organized system at
time t and 〈xi(t) − x̄(t), l〉 · l denotes the projection of the vector xi(t) − x̄(t)
on the direction l. Moreover, F (xi(t)) denotes the inner attractive force that
drives the agent i to move towards the prescribed line, which passes through
the center x̄ and is parallel with l. Particularly, F has the properties:

〈F (xi(t)), l〉 = 0 for all t and i,

N
∑

i=1

F (xi(t)) = γ
N
∑

i=1

[〈xi(t)− x̄(t), l〉 · l− (xi(t)− x̄(t))] = 0.

So if we let v(t) = 1
N

∑N

i=1 vi(t), then

(5)
dv(t)

dt
=

1

N

N
∑

i=1



α
∑

j 6=i

aij(x)(vj − vi) + F (xi)



 = 0.

2.2. Ball-shaped target motion pattern

In this subsection, we suppose the prescribed motion pattern is ball-shaped.
We propose the following form for the function F :

(6) F̃ (xi(t)) =
wi(t)

1 +
∑N

i=1 |wi(t)|
and wi(t) = (1−

R

|xi(t)− x̄(t)|
)(x̄(t)−xi(t)),

where R is the radius of the target ball-shaped flock pattern and x̄(t) denotes
the mass center of all agents at t. If |xi(t) − x̄(t)| < R, then F (xi(t)) pushes
the agent i out of the circle; and if |xi(t) − x̄(t)| > R, then F (xi(t)) pulls the

agent i back into the circle. In general,
∑N

i=1 F̃ (xi(t)) 6= 0.

3. Line-shaped flocking pattern

In this section, we analytically show that all solutions of the self-organizing
system (3) with F given by (4) converge to a flock, and the final flocking
position pattern is the prescribed line l.

Theorem 3.1. If the influence function I satisfies
∫∞

0
I(r)dr = ∞, then the

solution of the self-organizing system (3) with F given by (4) converges to a

flock. Furthermore, the asymptotic flocking velocity satisfies v̄∞= 1
N

∑N

i=1 vi(0).
In particular, the final flocking pattern is a line parallelled to l.
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Proof. Let

x̄(t) =
1

N

N
∑

i=1

xi(t) and v̄(t) =
1

N

N
∑

i=1

vi(t).

Noting the facts that
∑N

i=1 F (xi) = 0 and aij = aji, then

d

dt
v̄(t) =

1

N

N
∑

i=1

d

dt
vi(t) =

1

N

N
∑

i=1

[α
∑

j 6=i

aij(x)(vj − vi) + F (xi)] = 0.

Thus v̄(t) ≡ v̄(0) = 1
N

∑N
i=1 vi(0) for all t.

Furthermore,

d

dt
|〈xi − x̄, l〉|2 −

d

dt
|xi − x̄|2 = 2

〈

〈xi − x̄, l〉 · l− (xi − x̄), (vi − v̄)
〉

=
2

γ
〈F (xi),vi − v̄〉.

As I is monotonically decreasing and from the equality (5), we can obtain that

d

dt

N
∑

i=1

|vi − v̄|2

= 2

N
∑

i=1

〈
dvi

dt
−

dv̄

dt
,vi − v̄〉

= 2

N
∑

i=1

〈

α

N
∑

j=1

aij(x)(vj − vi) + F (xi),vi − v̄
〉

=
α

N

N
∑

i=1

N
∑

j=1

(〈

I(|xj − xi|)(vj − vi),vi − v̄
〉

+
〈

I(|xj − xi|)(vi − vj),vj − v̄
〉)

+ 2

N
∑

i=1

〈F (xi),vi − v̄〉

= −
α

N

N
∑

i=1

N
∑

j=1

〈

I(|xj − xi|)(vi − vj),vi − vj

〉

+ 2
N
∑

i=1

〈F (xi),vi − v̄〉

= − 2α

N
∑

i=1

〈

I(dX)(vi − v̄),vi − v̄
〉

+ 2

N
∑

i=1

〈F (xi),vi − v̄〉

= − 2α

N
∑

i=1

I(dX)|vi − v̄|2 + 2

N
∑

i=1

〈F (xi),vi − v̄〉

= − 2α

N
∑

i=1

I(dX)|vi − v̄|2 + γ

N
∑

i=1

(
d

dt
|〈xi − x̄, l〉|2 −

d

dt
|xi − x̄|2).
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Therefore,

(7)
d

dt

N
∑

i=1

|vi−v̄|2+γ
N
∑

i=1

d

dt
(|xi−x̄|2−|〈xi−x̄, l〉|2) ≤ −2α

N
∑

i=1

I(dX)|vi−v̄|2,

where

dX(t) := max
1≤i<j≤N

{|xj(t)− xi(t)|}.

Since I(r) is non-negative and from the inequality (7), we can obtain

d

dt

N
∑

i=1

|vi − v̄|2 + γ

N
∑

i=1

d

dt
(|xi − x̄|2 − |〈xi − x̄, l〉|2) ≤ 0.

Next, we will finish the proof by two steps:

STEP 1: Prove limt→∞ vi(t) = v(0) for all i.
Firstly, we simplify the above formulations by denoting

s2i := |xi − x̄|2 − |〈xi − x̄, l〉|2, (si ≥ 0),

s2 := γ
N
∑

i=1

s2i , (s ≥ 0),

v∗ := (v1 − v̄,v2 − v̄, . . . ,vN − v̄).

The norm of v∗ is defined as usual

|v∗| :=

(

N
∑

i=1

|vi − v̄|2

)

1

2

.

Then the inequality (7) is

d|v∗|2

dt
+

d(s2)

dt
≤ 0.

Thus |v∗|2 + s2 is non-increasing so that

|v∗(t)|2 + s2(t) ≤ |v∗(0)|2 + s2(0).

Since |v∗(t)|2 ≥ 0, we achieve that

s2(t) ≤ |v∗(0)|2 + s2(0) := M∗ (t ≥ 0).

This implies

γ

N
∑

i=1

s2i ≤ M∗.

Applying the arithmetic-geometric inequality, we have

γ

N
(

N
∑

i=1

si)
2 ≤ γ

N
∑

i=1

s2i .
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Based on the above two inequalities, it’s easy to see that

si ≤
N
∑

i=1

si ≤

√

N

γ
M∗ := M.(8)

In fact, the inequality (8) indicates that if we project the whole system
into the plane which is perpendicular to the prescribed direction, then the
projective system is bounded. So we only need to consider the one-dimension
space which is parallel with l. If in this one-dimension space, the projective
system is bounded, then the original system we consider is bounded. To this
end, we deduce a new system by a projection process. (inner-product both
sides of the original equation (3) by l)

dx̃i(t)

dt
= ṽi(t),

dṽi(t)

dt
= α

∑

j 6=i

aij(x)(ṽj − ṽi),

where x̃i = (xi, l), ṽi = (vi, l), i = 1, 2, . . . , N. For the new system, similarly,
we introduce

dX := max
1≤i<j≤N

|xj − xi|, dX̃ := max
1≤i<j≤N

|x̃j − x̃i|.

From the equation (8), we have

dX ≤
√

d2
X̃
+M2.

Thus,

d

dt

N
∑

i=1

|ṽi − ṽ|2 = 2

N
∑

i=1

〈 d

dt
(ṽ− ṽ), ṽi − ṽ

〉

= −
α

N

N
∑

i=1

N
∑

j=1

〈

I(|xj − xi|)(ṽi − ṽj), ṽi − ṽj

〉

= −2α

N
∑

i=1

〈

I(|xj − xi|)(ṽi − ṽ), ṽi − ṽ
〉

≤ −2α

N
∑

i=1

I(dX)|ṽi − ṽ|2

≤ −2α

N
∑

i=1

I(
√

d2
X̃
+M2)|ṽi − ṽ|2.

Considering the function G(r) := I(
√
r2 +M2) for r > 0, we can obtain

d

dt

N
∑

i=1

|ṽi − ṽ|2 ≤ −2α

N
∑

i=1

G(dX̃)|ṽi − ṽ|2.
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In [11], by using Lyapunov functional method, we see that if

(9)

∫ ∞

0

G(r)dr = ∞,

then there exists d∗ > 0 such that for all t > 0,

(10) dX̃(t) ≤ d∗.

Following the fact that I(r + M) < G(r) < I(r), we see
∫∞

0
I(r)dr = ∞ is

equivalent to (9). At this stage, let us look back to equations (7) and (10),

(11)
d|v∗|2

dt
+

d(s2)

dt
≤ −2αI(d∗)|v

∗|2.

Integrating both sides of the above inequality from 0 to ∞, we find the left-
hand side is bounded, so the right-hand side

∫∞

0 |v∗|2dt must be bounded as
well. This means

(12) lim
t→∞

|v∗|2 = 0,

since d|v∗|2

dt
is bounded.

Thus, for all i,

(13) lim
t→∞

vi(t) = v(0).

STEP 2: Prove limt→∞[(xi − x, l) · l− (xi − x)] = 0.
Noting equation (11) and |v∗|2+ s2 is monotonically decreasing, we see that

lim
t→∞

(|v∗|2 + s2) exists. Thus

lim
t→∞

(|v∗|2 + s2) = lim
t→∞

s2.

We claim that limt→∞ s(t) = 0. In fact, if there is a constant δ such that
limt→∞ s(t) = δ > 0, then it follows from the definition of s(t) and si(t)
that there is at least one si(t) satisfying limt→∞ si = δ∗i > 0 for some δ∗i .
This implies two cases: one is limt→∞ si = δi > 0 for some δi, the other is
limt→∞ si = 0.

For the first case, it follows from (13) that there is a t∗ > 0 such that
whenever t ≥ t∗,

|α
∑

j 6=i

aij(x)(vj − vi)| <
1

3
γδ∗i

and

δi − si ≤
1

3
δ∗i .

Thus

|
dvi

dt
| >

1

3
γδ∗i for all t ≥ t∗.

This is impossible and contrary to equation (13).
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For the second case, similarly, by using the classical mathematical analysis,
we see that limt→∞ si = 0 6= limt→∞si is also impossible.

Summarizing from above two cases, we see that limt→∞ s(t) = 0. This leads
to

lim
t→∞

[(xi − x, l) · l− (xi − x)] = 0.

Thus there is a constant ci such that

lim
t→∞

(xi − x) = cil for all i.

Based on above two steps, we conclude that the solution of the self-organizing
system (3) and (4) converges to a flock if

∫∞

0 I(r)dr = ∞ holds. Moreover, the

asymptotic flocking velocity satisfies v̄∞ = 1
N

∑N

i=1 vi(0). In particular, the
final flocking pattern is a line parallelled to l. This completes the proof of
Theorem 3.1. �

Remark 3.1. From Theorem 3.1, we see that the driving force F given by (4)
does not change the final velocity of the flocking, which is also the average of
the initial velocity, but changes the final flocking pattern.

Remark 3.2. We can also formulate the kinetic model with a target motion
pattern driving force function. To this end, as in [5, 12], we proceed the model
through a mean-field limit. The key idea of the mean-field limit is to derive a
single evolutionary equation for fN , and the empirical distribution function is
defined as

fN(x,v, t) =
1

N

N
∑

i=1

δ(x − xi(t))δ(v − vi(t)).

The density distribution function is then

ρN (x, t) =

∫

Rd

fN(x,v, t)dv.

Thus the model of line-shaped motion pattern at the mesoscopic level takes the
form of

∂tf
N + v · ∇xf

N = −∇v · (E(x,v)fN ),

where

E(x,v) = α

∫

Rd

∫

Rd

I(x − y)(v−w)fN (y,w)dydw

+ γ

∫

Rd

[〈x − y, l〉l − (x− y)]ρN (y, t)dy.

Similarly, the model of ball-shaped formation motion at the mesoscopic level
reads as

∂tf
N + v · ∇xf

N = −∇v · (Ẽ(x,v)fN ),

where

Ẽ(x,v) = α

∫

Rd

∫

Rd

I(x− y)(v −w)fN (y,w)dydw
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+
(1− R∫

Rd
|x−y|ρN (y,t)dy

)
∫

Rd(y− x)ρN (y, t)dy

1 +
∫

Rd |1−
R∫

Rd
|x−y|ρN (y,t)dy

|
∫

Rd |y− x|ρN (y, t)dydx
.

4. Simulations
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Figure 1. Line-shaped flocking pattern with symmetric pair-
wise influence functions. The left panel denotes the initial po-
sitions of the agents, the middle is the position pattern at half
runtime and the right one is the final positions with the de-
signed flocking pattern. The values of parameters are: d = 2,
β = 1/10, l = 1√

2
(1, 1), α = 1, N = 20.

In this section, by using Matlab, we numerically explore the relationships
among the flocking patterns, the pairwise influence function aij and the target
motion pattern driving force function F . To this end, we simulate our mod-
els with both symmetric and non-symmetric pairwise influence functions aij .
Simulations are also performed for both the line-shaped and the ball-shaped
target motion patterns. We let I(r) = (1+ r2)−β and consider models (3) with
symmetric pairwise influence functions

aij(x) = I(|xi − xj |)/N,
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Figure 2. Line-shaped flocking pattern with nonsymmetric
pairwise influence. The left sub-figure denotes the initial posi-
tions of the agents, the middle is the position pattern at half
runtime and the right is the final position pattern. The values
of parameters is given by: d = 2, β = 1/10, l = 1√

2
(−1, 1),

α = 1, N = 20.

and the line-shaped target motion pattern driving force function

F (xi) =
wi

1 +
∑N

i=1 |wi|
, wi = 〈xi − x̄, l〉l− (xi − x̄).(14)

We take d = 2, β = 1
10 , l =

1√
2
(1, 1), α = 1, N = 20. Simulation results pre-

sented in Fig. 1 show that the solution converges to a flock with the prescribed
line shape.

For the non-symmetric pairwise influence functions ([14])

aij(x) = I(|xi − xj |)/
∑

k

I(|xi − xk|)

and F given by (14), we take the same initial value as symmetric case and set
d = 2, β = 1

10 , l =
1√
2
(−1, 1), α = 1, N = 20. Then our simulations (Fig. 2)

also confirm that the solution of self-organizing system (3) converges to a flock
with the prescribed motion pattern.
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Figure 3. Circle-shaped flocking pattern with symmetric
pairwise influence. The left sub-figure denotes the initial posi-
tions of the agents, the middle is the position pattern at half
runtime and the right one is the final flocking pattern. The
values of parameters is given by: d = 2, β=1/6, R = 5, α = 1,
N = 45.

Next we consider the symmetric pairwise influence functions

aij(x) = I(|xi − xj |)/N,

and

(15) F̃ (xi) =
wi

1 +
∑N

i=1 |wi|
, wi = (1 −

R

|xi − x̄|
)(x̄− xi).

We take d = 2, β = 1
6 , R = 5, α = 1, N = 45. Then our simulations (Fig.

3) suggest that the solution of self-organizing system (3) converges to a flock
with the prescribed circle-shaped pattern.

With the same initial values as above, we take d = 2, β = 1
10 , R = 4, α = 1,

N = 45 and consider the non-symmetric pairwise influence

aij(x) = I(|xi − xj |)/
∑

k

I(|xi − xk|)

and F . Again, the solution of the self-organizing system (3) is shown to con-
verge to a flock with the prescribed circle-shaped pattern as shown in Fig.
4.
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Figure 4. Circle-shaped flocking pattern with nonsymmet-
ric pairwise influence. The left sub-figure denotes the initial
positions of the agents, the middle is the position pattern at
half runtime and the right one is the final position with the
designed flocking pattern. The values of parameters is given
by: d = 2, β=1/10, R = 4, α = 1, N = 45.

Acknowledgements. This work was partially supported by National Natural
Science Foundation of China (11201481 and 11301039). The authors would like
to acknowledge Xin Zeng and Ban Wang for helpful discussion.

References

[1] G. Albi and L. Pareschi, Modeling of self-organized systems interacting with a few

individuals: From microscopic to macroscopic dynamics, Appl. Math. Lett. 26 (2013),
no. 4, 397–401.

[2] A. Barbaro, K. Taylor, P. F. Trethewey, L. Youse, and B. Birnir, Discrete and continu-

ous models of the dynamics of pelagics fish: application to the capelin, Math. Comput.
Simulation 79 (2009), no. 12, 3397–3414.

[3] B. Birnir, An ODE model of the motion of pelagics fish, J. Stat. Phys. 128 (2007), no.
1-2, 535–568.

[4] J. A. Canizo, J. A. Carrillo, and J. Rosado, A well-posedness theory in measures for

some kinetic models of collective motion, Math. Models Methods Appl. Sci. 21 (2011),
no. 3, 515–539.

[5] J. A. Carrillo, M. Fornasier, J. Rosado, and G.Toscani, Asymptotic flocking dynamics

for the kinetic Cucker-Smale model, SIAM J. Math. Anal. 42 (2010), no. 1, 218–236.



FLOCKING AND PATTERN MOTION 1339

[6] Y. L. Chuang, M. R. DOrsogna, D. Marthaler, A. L. Bertozzi, and L. Chayes, State

transitions and the continuum limit for a 2D interacting, self-propelled particle system,
Phy. D 232 (2007), no. 1, 33–47.

[7] I. D. Couzin, J. Krause, N. R. Franks, and S. Levin, Eective leadership and decision

making in animal groups on the move, Nature 433 (2005), 513–516.
[8] F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math. 2 (2007), no.

1, 197–227.
[9] , Emergent behavior in flocks, IEEE Trans. Automat. Control 52 (2007), no. 5,

852–862.
[10] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S. Chayes, Slf-propelled particles

with soft-core interactions: patterns, stability, and collapse, Phys. Rev. Lett. 96 (2006),
104–302.

[11] S. Y. Ha and J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and

mean-field limit, Commun. Math. Sci. 7 (2009), no. 2, 297–325.
[12] S. Y. Ha and E. Tadmor, From particle to Kinetic and hydrodynamic descriptions of

flocking, Kinet. Relat. Models 1 (2008), no. 3, 415–435.
[13] Y. C. Liu and J. H. Wu, Flocking and asymptotic velocity of the Cucker-Smale model

with processing delay, J. Math. Anal. Appl. 415 (2014), no. 1, 53–61.
[14] S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking

behavior, J. Stat. Phys. 144 (2011), no. 5, 923–947.
[15] J. Park, H. J. Kim, and S. Y. Ha, Cucker-Smale flocking with inter-particle bonding

forces, IEEE Trans. Automat. Control 55 (2010), no. 11, 2617–2623.
[16] J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math. 68

(2008), no. 3, 694–719.
[17] C. M. Topaz, A. L. Bertozzi, and M. A. Lewis, A nonlocal continuum model for biological

aggregation, Bull. Math. Biol. 68 (2006), no. 7, 1601–1623.

Xiang Li

College of Science

National University of Defense Technology

Changsha, 410073, P. R. China

E-mail address: sizuin@live.cn

Yicheng Liu

College of Science

National University of Defense Technology

Changsha, 410073, P. R. China

E-mail address: liuyc2001@hotmail.com

Jun Wu

College of Mathematics and Computer Science

Changsha University of Science Technology

Changsha, 410114, P. R. China

E-mail address: junwmath@hotmail.com




