• Title/Summary/Keyword: Defect Phenomena

Search Result 77, Processing Time 0.025 seconds

Improvement of Micro-hole EDM Efficiency using Vibration Flushing (진동기구를 이용한 미세구멍 방전가공의 효율향상)

  • Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.623-628
    • /
    • 2011
  • Micro EDM(Electric Discharge Machining) is one of the most powerful technologies which are capable of fabricating micro-structure without any problems from high cutting force. However, there is a significant defect in the part machining with deep holes or pockets, because debris which are generated by electric discharging may frequently cause a short circuit between an electrode and workpiece material. Vibration flushing can reduce the undesirable phenomena with dynamic flow of EDM fluid in a deep and choked area. In this study, Vibration flushing with solenoid is suggested and the results show that the method can generate a remarkable EDM efficiency with high amplitude at a low frequency in comparison with current vibration flushing methods with high frequency using piezo actuators.

A Numerical Design and Feasibility Study of Self-Wastage Experiment Using Simulant Material in a Sodium Fast Reactor

  • Jang, Sunghyon;Takata, Takashi;Yamaguchi, Akira
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.368-375
    • /
    • 2016
  • A sodiume-water reaction takes place when high-pressured water vapor leaks into sodium through a tiny defect on the surface of the heat transfer tube in a steam generator of the sodium-cooled fast reactor. The sodiume-water reaction brings deterioration of the mechanical strength of the heat transfer tube at the initial leakage site. As a result, it damages the crack itself, which may eventually enlarge into a larger opening. This self-enlargement is called "self-wastage phenomenon." In this study, a simulant experiment was proposed to reproduce the self-enlargement of a crack and to evaluate the mechanism of the self-wastage. The damage on the surface of the crack was simulated by making the neutralization reaction with hydrochloric acid solution and sodium hydroxide solution. A numerical investigation was carried out to validate the feasibility of the approach and to determine experimental conditions. From the computation results, it is observed that when 5M HCl is injected into 5M of NaOH with 0.05 m/s inlet velocity, the temperature at the surface near the crack increased over 319.26 K. The computational results show that the self-wastage phenomenon is capable of being reproduced by the simulant experiment.

Solidification Analysis for Surface Defect Prediction of Rheology Forming Process Considering Flow Phenomena of Liquid and Solid Region (액상과 고상의 유동현상을 고려한 레오로지 성형공정의 표면결함예측을 위한 응고해석)

  • Seo, Pan-Ki;Jung, Young-Jin;Kang, Chung-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1971-1981
    • /
    • 2002
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocities and temperature fields during rheology forming process, the each governing equations correspondent to the liquid and solid region are adapted. Therefore, each numerical model considering the solid and liquid coexisting region within the semi-solid material have been developed to predict the defects of rheology forming parts. The Arbitrary Boundary Maker And Cell(ABMAC) method is employed to solve the two-Phase flow model of the Navier-Stokes equation. Theoretical model basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on using the liquid and solid viscosity. The Liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

Defect-free 4-node flat shell element: NMS-4F element

  • Choi, Chang-Koon;Lee, Phill-Seung;Park, Yong-Myung
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.207-231
    • /
    • 1999
  • A versatile 4-node shell element which is useful for the analysis of arbitrary shell structures is presented. The element is developed by flat shell approach, i.e., by combining a membrane element with a Mindlin plate element. The proposed element has six degrees of freedom per node and permits an easy connection to other types of finite elements. In the plate bending part, an improved Mindlin plate has been established by the combined use of the addition of non-conforming displacement modes (N) and the substitute shear strain fields (S). In the membrane part, the nonconforming displacement modes are also added to the displacement fields to improve the behavior of membrane element with drilling degrees of freedom and the modified numerical integration (M) is used to overcome the membrane locking problem. Thus the element is designated as NMS-4F. The rigid link correction technique is adopted to consider the effect of out-of-plane warping. The shell element proposed herein passes the patch tests, does not show any spurious mechanism and does not produce shear and membrane locking phenomena. It is shown that the element produces reliable solutions even for the distorted meshes through the analysis of benchmark problems.

A Study on the Safety Inspection System Improvement of Agricultural Reservoir Considering Fill-Dam Characteristics (필 댐의 특성을 고려한 농업용 저수지 정밀안전진단체계 개선 연구)

  • Lee, Chang Beom;Jung, Nam Su;Park, Seong Ki;Jeon, Sang Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • In 2008, 17, 596 dams and reservoirs are scattered across South Korea, and 17, 505 of them (99.5 %) are used for agriculture and 99.3 % are fill dam types. This study aimed to review literature related to the precise safety diagnosis system for agricultural reservoirs established by Korea Rural Community Corporation (KRCC) and analyze problems of its evaluation method. And then, it proposed ways to improve the system including a modified diagnosis system, which was applied to pilot districts in order to verify the utility. For assessment model development of agricultural reservoir, we reviewed status of precision safety inspections systems of agricultural reservoir. There are many problems such as assess agricultural reservoir not by sheet which used in fill dam but by block which used in concrete dam construction and diversion tunnel which main element in reservoir levee is treated as water intake facility. For considering diversion tunnel in reservoir levee, previous precision safety inspection systems which summed in separated phenomenon, separated element, separated site, separated facility was change to new systems which summed in site, phenomenon, element, and facility. Compared results of previous inspection system calculated total assessment index (Ec) with new system calculated total assessment index (Ec) are not show statistical difference.

Microscopy Study for the Batch Fabrication of Silicon Diaphragms (실리콘 Diaphragm의 일괄 제조공정을 위한 Microscopy Study)

  • 하병주;주병권;차균현;오명환;김철주
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.1
    • /
    • pp.33-40
    • /
    • 1992
  • Several etching phenomena were observed and analyzed in diaphragm process performed on 4-inch (100) Si wafers for sensor application. In case of deep etching to above 300$\mu$m depth, the etch-defects appeared at etched surface could be classified into three categories such as hillocks, reaction products, and white residues. It was known that the hillock had a pyramidal shape or trapizoidal hexahedron structure depending on the density and size of the reaction products. The IR spectra showed that the white residue, which was due to the local over-saturation of Si dissolved in solution, was mostly Si-N-O compounds mixed with a small amount of H and C etc. Also, the difference in both the existence of etch-defects and etch rate distribution over a whole wafer was investigated when the etched surfaces were downward, upward horizontally and erective in etching solutions. The obtained data were analyzed through flow pattern in the etching bath. As the results, the downward and erective postures were favorable in the etch rate uniformity and the etch-defect removal, respectively.

  • PDF

A Study on the Electrical Characteristic Analysis of c-Si Solar Cell Diodes

  • Choi, Pyung-Ho;Kim, Hyo-Jung;Baek, Do-Hyun;Choi, Byoung-Deog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • A study on the electrical characteristic analysis of solar cell diodes under experimental conditions of varying temperature and frequency has been conducted. From the current-voltage (I-V) measurements, at the room temperature, we obtained the ideality factor (n) for Space Charge Region (SCR) and Quasi-Neutral Region (QNR) of 3.02 and 1.76, respectively. Characteristics showed that the value of n (at SCR) decreases with rising temperature and n (at QNR) increases with the same conditions. These are due to not only the sharply increased SCR current flow but the activated carrier recombination in the bulk region caused by defects such as contamination, dangling bonds. In addition, from the I-V measurements implemented to confirm the junction uniformity of cells, the average current dispersion was 40.87% and 10.59% at the region of SCR and QNR, respectively. These phenomena were caused by the pyramidal textured junction structure formed to improve the light absorption on the device's front surface, and these affect to the total diode current flow. These defect and textured junction structure will be causes that solar cell diodes have non-ideal electrical characteristics compared with general p-n junction diodes. Also, through the capacitance-voltage (C-V) measurements under the frequency of 180 kHz, we confirmed that the value of built-in potential is 0.63 V.

A Study on Distributed Particle Swarm Optimization Algorithm with Quantum-infusion Mechanism (Quantum-infusion 메커니즘을 이용한 분산형 입자군집최적화 알고리즘에 관한 연구)

  • Song, Dong-Ho;Lee, Young-Il;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.527-531
    • /
    • 2012
  • In this paper, a novel DPSO-QI (Distributed PSO with quantum-infusion mechanism) algorithm improving one of the fatal defect, the so-called premature convergence, that degrades the performance of the conventional PSO algorithms is proposed. The proposed scheme has the following two distinguished features. First, a concept of neighborhood of each particle is introduced, which divides the whole swarm into several small groups with an appropriate size. Such a strategy restricts the information exchange between particles to be done only in each small group. It thus results in the improvement of particles' diversity and further minimization of a probability of occurring the premature convergence phenomena. Second, a quantum-infusion (QI) mechanism based on the quantum mechanics is introduced to generate a meaningful offspring in each small group. This offspring in our PSO mechanism improves the ability to explore a wider area precisely compared to the conventional one, so that the degree of precision of the algorithm is improved. Finally, some numerical results are compared with those of the conventional researches, which clearly demonstrates the effectiveness and reliability of the proposed DPSO-QI algorithm.

Analysis of Grain Boundary Phenomena in ZnO Varistor Using Dielectric Functions (유전함수를 이용한 ZnO 바리스터의 입계 특성 분석)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.178-178
    • /
    • 2008
  • ZnO 바리스터는 인가되는 전압에 따라 저항이 변하는 전압 의존형 저항체이며 각종 전기 전자 정보통신용 제품에 정전기(ESD) 대책용 소자로 폭 넓게 사용되는 전자 세라믹스 부품이다. 특별히 Bi-based ZnO 바리스터는 다양한 상(phase)으로 구성되어 있으며 그 입계의 전기적 특성은 소량 첨가되는 dopant의 종류에 따라 다양하게 변하는 것으로 알려져 있다. 본 연구에서는 Bi-based ZnO 바리스터 (ZnO-$Bi_2O_3$, ZnO-$Bi_2O_3-Mn_3O_4$)에서 각종 유전함수$(Z^*,M^*,\varepsilon^*,Y^*,tan{\delta})$를 이용하여 입계의 주파수-온도에 대한 특성을 살펴 보았다. 일반적인 ZnO 바리스터 제조법으로 시편을 제작하여 78K~800K 온도 범위에서 각종 유전함수를 이용하여 복소 평면도(complex plane plot)와 주파수 응답도(frequency explicit plot)의 방법으로 defect level과 입계 특성(활성화 에너지, 정전용량, 저항, 입계 안정성 등)에 대하여 고찰하였다. ZnO-$Bi_2O_3$(ZB)계와 ZnO-$Bi_2O_3-Mn_3O_4$(ZBM)계 모두 상온 이하의 온도에서 $Zn_i$$V_o$의 결함이 나타났으며, 이들의 결함 준위는 각 유전함수에 따라 다소 차이가 났다. 입계 특성으로 ZB계는 이상구간(560~660K)을 전후로 1.15 eV $\rightarrow$ 1.49 eV의 활성화 에너지의 변화가 나타났지만, ZBM계는 이러한 현상이 나타나지 않았다. 또한 입계 전위 장벽의 온도 안정성에 대해서는 Cole-Cole model을 적용하여 분포 파라미터 (distribution parameter; $\alpha$)를 구하여 고찰하였다. ZB계의 입계 안정성은 온도에 따라 불안정해 졌지만, ZBM계는 안정하였다.

  • PDF

An Experimental Study on the Cause of Signal Inhomogeneity for Magnetic Resonance Angiography Using Phantom Model of Anterior Communicating(A-com) Artery (전교통동맥 모형을 이용한 자기공명혈관촬영술의 신호 불균일에 관한 실험적 연구)

  • Yoo, Beong-Gyu;Chung, Tae-Sub
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • Aneurysm-mimicking findings were frequently visualized due to hemodynamical causes of dephasing effects around area of A-com artery during magnetic resonance angiography(MRA) and these kind of phenomena have not been clearly known yet. We investigated the hemodynamical patterns of dephasing effect around area of the A-com artery that might be a cause of false intracranial aneurysms on MRA. For experimental study, We used hand-made silicon phantoms of the asymmetric A-com artery as like a bifurcation configuration. In a closed circulatory system with UHDC computer driven cardiac pump system. MRA and fast digital subfraction angiography(DSA) involved the use of these phantoms. Flow patterns were evaluated with axial and coronal imaging of MRA(2D-TOF, 3D-TOF) and DSA of Phantoms constructed from an automated closed-type circulatory system filled with glycerol solution [circulation fluid(glycerol:water = 1:1.4)]. These findings were then compared with those obtained from computational fluid dynamic(CFD) for inter-experimental correlation study. Imaging findings of MRA, DSA and CFD on inflow zone according to the following: a) MRA demonstrated high signal intensity zone as inflow zone on silicon phantom; b) Patterns of DSA were well matched with MRA on trajectory of inflow zone; and c) CFD were well matched with MRA on the pattern of main flow. Imaging findings of MRA. DSA and CFD on turbulent flow zone according to the following: a) MRA demonstrated hyposignal intensity zone at shoulder and axillar zone of main inflow; b) DSA delineated prominent vortex flow at the same area. The hemodynamical causes of signal defect, which could Induce the false aneurysm on MRA, turned out to be dephasing effects at axilla area of bifurcation from turbulent flow as the results of MRA, DSA and CFD.

  • PDF