• Title/Summary/Keyword: Defect

Search Result 8,081, Processing Time 0.038 seconds

Classification and Analysis of Characteristics of Changes in Apartment Landscape Work (아파트조경공사 설계변경의 유형분류와 특성분석)

  • Park, Chun-Soo;Park, Seung-Burm
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.28-42
    • /
    • 2009
  • In the wake of categorizing the design changes occurred during the period from 2004 till the first half of 2006 in Choongcheong province area, based on purpose and reason of design changes identified by the Korea National Housing Corp, it included 11 types such as the image of the apartment complex, scenic elements, consideration by the user, prevention of the defect, constructability, site conditions, incompatibility between the activities, superordinate standard, prevention of civic complaints, design details and others, along with 47 subordinate elements. And the evaluation intended to identify the corelation between the number and time of design change approval, frequency and scale of design change by type and the cost variations indicated that; firstly, enhancing the image of the apartment complex proved to be the main reason for design changes, accounting for 22% in terms of frequency and 54.9% in terms of cost variation. Secondly, the higher the increase in cost by design change aimed at improving the image of the complex, the lower the decrease in cost by design change for uncertain reasons, dubbed the inverse proportional relations, indicating that the design changes for uncertain reasons were mostly aimed at reducing the construction cost. Thirdly, with regard to the number of design change approval and the time of the initial approval, twice or less and 90 days or less before completion of the construction work, respectively, accounted for $52{\sim}53%$, indicating the design change deliberation and approval tended to have been carried out collectively in the form of ex post facto approval, which seemed to be attributable to the attempt of reducing the construction cost or budget problem, as a result of comparing with the cases in which the cost was reduced.

Analysis of Defective Causes in Real Time and Prediction of Facility Replacement Cycle based on Big Data (빅데이터 기반 실시간 불량품 발생 원인 분석 및 설비 교체주기 예측)

  • Hwang, Seung-Yeon;Kwak, Kyung-Min;Shin, Dong-Jin;Kwak, Kwang-Jin;Rho, Young-J;Park, Kyung-won;Park, Jeong-Min;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.203-212
    • /
    • 2019
  • Along with the recent fourth industrial revolution, the world's manufacturing powerhouses are pushing for national strategies to revive the sluggish manufacturing industry. Moon Jae-in, the government is in accordance with the trend, called 'advancement of science and technology is leading the fourth round of the Industrial Revolution' strategy. Intelligent information technology such as IoT, Cloud, Big Data, Mobile, and AI, which are key technologies that lead the fourth industrial revolution, is promoting the emergence of new industries such as robots and 3D printing and the smarting of existing major manufacturing industries. Advances in technologies such as smart factories have enabled IoT-based sensing technology to measure various data that could not be collected before, and data generated by each process has also exploded. Thus, this paper uses data generators to generate virtual data that can occur in smart factories, and uses them to analyze the cause of the defect in real time and to predict the replacement cycle of the facility.

Growth and effect of thermal annealing for $AgGaSe_2$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 열처리 효과)

  • Baek, Seung-Nam;Hong, Kwang-Joon;Kim, Jang-Bok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.189-197
    • /
    • 2006
  • A stoichiometric mixture of evaporating materials for $AgGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy(HWE) system. The source and substrate temperatures were $630^{\circ}C\;and\;420^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.9501eV-(8.79x10^{-4}eV/K)T^2(T+250K)$. After the as-grown $AgGaSe_2$ single crystal thin films was annealed in Ag-, Se-, and Ga-atmospheres, the origin of point defects of $AgGaSe_2$ single crystal thin films has been investigated by the photoluminescence (PL) at 10K. The native defects of $V_{Ag},\;V_{Se},\;Ag_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaSe_2$ single crystal thin films to an optical p-type. Also, we confirmed that Ga in $AgGaSe_2$/GaAs did not form the native defects because Ga in $AgGaSe_2$ single crystal thin films existed in the form of stable bonds.

Novel Connective tissue graft technique for Ridge Augmentation in case of Conventional fixed partial denture : Case reports (치조제 결손부 증대를 위한 새로운 결합조직 이식술)

  • Ahn, Myung-Hwan
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.22 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • There have been a great number of developments in clinical techniques and dental materials in dentistry to date. Looking at these developments, while it could be seen that functional elements such as mastication were prioritized rather than aesthetic aspect in the past, aesthetic needs of patients have steadily increased over time and accordingly the aesthetic has become considered a priority in the development of dentistry. Although the first to be considered in discussing the aesthetic in clinical dentistry will be the white aesthetic that is the tooth part of prosthesis, the pink aesthetic that refers to the harmony of such prosthesis with gingiva can be an important consideration not to be ignored aesthetically. However, the harmony with the gingiva often cannot be obtained only by the beautiful prosthesis, and in particular, the pontic and implant areas have poor conditions to achieve the gingival (pink) aesthetic due to the absorption of alveolar ridge compared to natural teeth. Among the most important elements of the gingival aesthetic are the gingival level and the interproximal papilla height. It is very difficult to make the gingival aesthetic in the case of insufficient alveolar ridge, and the recovery of ridge volume and contour is necessary in order to overcome this condition. To this end, the most widely used method is the "connective tissue graft". Many techniques of the connective tissue graft have already been introduced for the ridge augmentation, and each technique has different purposes, and advantages and disadvantages. Rather, due to the excessive amount of techniques, there is confusion about selecting the right technique at a certain time. However, the goal is clear. Ways to increase the success rates must be found, and at the same time, a more favorable way to the gingival aesthetic is to be chosen. Thus, in this study, considerations for the gingival aesthetic that makes harmony and the techniques to achieve it are discussed.

A Proposal for Optimizing Unit Modular System Process to Improve Efficiency in Off-site Manufacture, Transportation and On-site Installation (유닛 모듈러 공법의 효율성 확보를 위한 공장제작, 운반, 현장설치의 최적 공정 제안)

  • Lee, Kwang-Bok;Kim, Kyung-Rai;Shin, Dong-Woo;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.14-21
    • /
    • 2011
  • A unit modular system is a construction method which installs on site by manufacturing 50%~90% of the whole process in the factory. This method can minimize the process in the site and maximize the operation, which will reduce the duration and improve the overall quality. The recent paradigm of construction is to be sustainable building. Modular system can be regarded as a sustainable building construction method because it can reduce the amount of construction waste by recycling partial or whole part of overdue building be torn down. A unit modular system is the answer to cope with the increasing market of small size housings. A unit modular system is the most appropriate option at this point. This research proposes the standard operation and construction process of modular system, which enable to optimal system. A case study of reconstructing small-size housing was introduced to support this proposal. Finished unit modular is the reasonable way. However, 80% of complication rate of the modular is the most rational when a defect occurrence during delivery is considered.

The Effect of Thermal Annealing and Growth of Cdln2S4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 Cdln2S4 단결정 박막 성장과 열처리 효과)

  • 홍광준;이관교
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.923-932
    • /
    • 2002
  • A stoichiometric mixture of evaporating materials for CdIn$\_$2/S$\_$4/ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CdIn$\_$2/S$\_$4/ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by hot wall epitaxy(HWE) system. The source and substrate temperatures were 630 $\^{C}$ and 420 $\^{C}$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of CdIn$\_$2/S$\_$4/ single crystal thin films measured from Hall effect by van der Pauw method are 9.01$\times$10$\^$16/ cm$\^$-3/ and 219 ㎠/V$.$s at 293 K, respectively. From the optical absorption measurement, the temperature dependence of energy band gap on CdIn$\_$2/S$\_$4/ single crystal thin films was found to be Eg(T) = 2.7116 eV - (7.74 $\times$ 10$\^$-4/ eV) T$\^$2//(T+434). After the as-grown CdIn$\_$2/S$\_$4/ single crystal thin films was annealed in Cd-, S-, and In-atmospheres, the origin of point defects of CdIn$\_$2/S$\_$4/ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of V$\_$cd/, V$\_$s/, Cd$\_$int/ and S$\_$int/ obtained by PL measurements were classified as donors or accepters type. And we concluded that the heat-treatment in the S-atmosphere converted CdIn$\_$2/S$\_$4/ single crystal thin films to an optical p-type. Also, we confirmed that In in CdIn$\_$2/S$\_$4/GaAs did not from the native defects because In in CdIn$\_$2/S$\_$4/ single crystal thin films existed in the form of stable bonds.

Site-selective Photoluminescence Spectroscopy of Er-implanted Wurtzite GaN under Various Annealing Condition

  • Kim, Sangsig;Sung, Man Young;Hong, Jinki;Lee, Moon-Sook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.26-31
    • /
    • 2000
  • The ~1540 nm $^4$ $I_{13}$ 2/ longrightarro $w^4$ $I_{15}$ 2/ emissions of E $r^{3+}$ in Er-implanted GaN annealed at temperatures in the 400 to 100$0^{\circ}C$ range were investigated to gain a better understanding of the formation and dissociation processes of the various E $r^{3+}$ sites and the recovery of damage caused by the implantation with increasing annealing temperature ( $T_{A}$).The monotonic increase in the intensity of the broad defect photoluminescence(PL) bands with incresing $T_{A}$ proves that these are stable radiative recombination centers introduced by the implantation and annealing process. Theser centers cannot be attributed to implantation-induced damage that is removed by post-implantation annealing. Selective wavelength pumpling of PL spectra at 6K reveals the existence of at least nine different E $r^{3+}$ sites in this Er-implanted semiconductor. Most pf these E $r^{3+}$ PL centers are attributed to complexed of Er atoms with defects and impurities which are thermally activated at different $T_{A}$. Only one of the nine observed E $r^{3+}$ PL centers can be pumped by direct 4f absorption and this indicates that it is highest concentration E $r^{3+}$ center and it represents most of the optically active E $r^{3+}$ in the implanted sample. The fact that this E $r^{3+}$ center cannot be strongly pumped by above-gap light or broad band below-gap absorption indicates that it is an isolated center, i.e not complexed with defects or impurities, The 4f-pumped P: spectrum appears at annealing temperatures as low as 40$0^{\circ}C$, and although its intensity increase monotonically with increasing $T_{A}$ the wavelengths and linewidths of its characteristic peaks asre unaltered. The observation of this high quality E $r_{3+}$PL spectrum at low annealing temperatures illustrates that the crystalline structure of GaN is not rendered amorphous by the ion implantation. The increase of the PL intensities of the various E $R_{3+}$sites with increasing $T_{A}$is due to the removal of competing nonradiative channels with annealing. with annealing.annealing.

  • PDF

The Effect of Thermal Annealing and Growth of CdGa2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 CdGa2Se4 단결정 박막 성장과 열처리 효과)

  • Hong, Myung-Seok;Hong, Kwang-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.829-838
    • /
    • 2007
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD).The carrier density and mobility of $CdGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}\;cm^{-3},\;345\;cm^2/V{\cdot}s$ at 293 K. respectively. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $Eg(T)\;=\;2.6400\;eV\;-\;(7.721{\times}10^{-4}\;eV/K)T^2/(T+399\;K)$. After the as-grown single crystal $CdGa_2Se_4$ thin films were annealed in Cd-, Se-, and Ga -atmospheres, the origin of point defects of single crystal $CdGa_2Se_4$ thin films has been investigated by PL at 10 K. The native defects of $V_{Cd}$, $V_{Se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or accepters. We concluded that the heat-treatment in the Cd-atmosphere converted single crystal $CdGa_2Se_4$ thin films to an optical p-type. Also, we confirmed that Ga in $CdGa_2Se_4/GaAs$ did not form the native defects because Ga in single crystal $CdGa_2Se_4$ thin films existed in the form of stable bonds.

저온 공정 온도에서 $Al_2O_3$ 게이트 절연물질을 사용한 InGaZnO thin film transistors

  • 우창호;안철현;김영이;조형균
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.11-11
    • /
    • 2010
  • Thin-film-transistors (TFTs) that can be deposited at low temperature have recently attracted lots of applications such as sensors, solar cell and displays, because of the great flexible electronics and transparent. Transparent and flexible transistors are being required that high mobility and large-area uniformity at low temperature [1]. But, unfortunately most of TFT structures are used to be $SiO_2$ as gate dielectric layer. The $SiO_2$ has disadvantaged that it is required to high driving voltage to achieve the same operating efficiency compared with other high-k materials and its thickness is thicker than high-k materials [2]. To solve this problem, we find lots of high-k materials as $HfO_2$, $ZrO_2$, $SiN_x$, $TiO_2$, $Al_2O_3$. Among the High-k materials, $Al_2O_3$ is one of the outstanding materials due to its properties are high dielectric constant ( ~9 ), relatively low leakage current, wide bandgap ( 8.7 eV ) and good device stability. For the realization of flexible displays, all processes should be performed at very low temperatures, but low temperature $Al_2O_3$ grown by sputtering showed deteriorated electrical performance. Further decrease in growth temperature induces a high density of charge traps in the gate oxide/channel. This study investigated the effect of growth temperatures of ALD grown $Al_2O_3$ layers on the TFT device performance. The ALD deposition showed high conformal and defect-free dielectric layers at low temperature compared with other deposition equipments [2]. After ITO was wet-chemically etched with HCl : $HNO_3$ = 3:1, $Al_2O_3$ layer was deposited by ALD at various growth temperatures or lift-off process. Amorphous InGaZnO channel layers were deposited by rf magnetron sputtering at a working pressure of 3 mTorr and $O_2$/Ar (1/29 sccm). The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. The TFT devices were heat-treated in a furnace at $300^{\circ}C$ and nitrogen atmosphere for 1 hour by rapid thermal treatment. The electrical properties of the oxide TFTs were measured using semiconductor parameter analyzer (4145B), and LCR meter.

  • PDF

Effect of the catalyst deposition rates on the growth of carbon nanotubes

  • Ko, Jae-Sung;Choi, In-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.264-264
    • /
    • 2010
  • Single-walled carbon nanotubes (SWCNTs) were grown on a Si wafer by using thermal chemical vapor deposition (t-CVD). We investigated the effect of the catalyst deposition rate on the types of CNTs grown on the substrate. In general, smaller islands of catalyst occur by agglomeration of a catalyst layer upon annealing as the catalyst layer becomes thinner, which results in the growth of CNTs with smaller diameters. For the same thickness of catalyst, a slower deposition rate will cause a more uniformly thin catalyst layer, which will be agglomerated during annealing, producing smaller catalyst islands. Thus, we can expect that the smaller-diameter CNTs will grow on the catalyst deposited with a lower rate even for the same thickness of catalyst. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. The catalyst layers were. coated by using thermal evaporation. The deposition rates of the Al and Fe layers varied to be 90, 180 sec/nm and 70, 140 sec/nm, respectively. We prepared the four different combinations of the deposition rates of the AI and Fe layers. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of $H_2$ as a carrier gas and 20 sccm of $C_2H_2$ as a feedstock at 95 torr and $810^{\circ}C$. The substrates were subject to annealing for 20 sec for every case to form small catalyst islands prior to CNT growth. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, UV-Vis NIR spectroscopy, and atomic force microscopy. The fast deposition of both the Al and Fe layers gave rise to the growth of thin multiwalled CNTs with the height of ${\sim}680\;{\mu}m$ for 10 min while the slow deposition caused the growth of ${\sim}800\;{\mu}m$ high SWCNTs. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of $113.3{\sim}281.3\;cm^{-1}$, implying the presence of SWCNTs (or double-walled CNTs) with the tube diameters 2.07~0.83 nm. The Raman spectra of the as-grown SWCNTs showed very low G/D peak intensity ratios, indicating their low defect concentrations.

  • PDF