DOI QR코드

DOI QR Code

The Effect of Thermal Annealing and Growth of Cdln2S4 Single Crystal Thin Film by Hot Wall Epitaxy

Hot Wall Epitaxy(HWE)법에 의한 Cdln2S4 단결정 박막 성장과 열처리 효과

  • Published : 2002.11.01

Abstract

A stoichiometric mixture of evaporating materials for CdIn$\_$2/S$\_$4/ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CdIn$\_$2/S$\_$4/ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by hot wall epitaxy(HWE) system. The source and substrate temperatures were 630 $\^{C}$ and 420 $\^{C}$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of CdIn$\_$2/S$\_$4/ single crystal thin films measured from Hall effect by van der Pauw method are 9.01$\times$10$\^$16/ cm$\^$-3/ and 219 ㎠/V$.$s at 293 K, respectively. From the optical absorption measurement, the temperature dependence of energy band gap on CdIn$\_$2/S$\_$4/ single crystal thin films was found to be Eg(T) = 2.7116 eV - (7.74 $\times$ 10$\^$-4/ eV) T$\^$2//(T+434). After the as-grown CdIn$\_$2/S$\_$4/ single crystal thin films was annealed in Cd-, S-, and In-atmospheres, the origin of point defects of CdIn$\_$2/S$\_$4/ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of V$\_$cd/, V$\_$s/, Cd$\_$int/ and S$\_$int/ obtained by PL measurements were classified as donors or accepters type. And we concluded that the heat-treatment in the S-atmosphere converted CdIn$\_$2/S$\_$4/ single crystal thin films to an optical p-type. Also, we confirmed that In in CdIn$\_$2/S$\_$4/GaAs did not from the native defects because In in CdIn$\_$2/S$\_$4/ single crystal thin films existed in the form of stable bonds.

Keywords

References

  1. Jpn. J. Appl. Phys. v.19 Study of the band edge in $CdIn_2S_4 by photovoltaic effect H. Nakanish https://doi.org/10.1143/JJAP.19.103
  2. J. Phys. Chem. Solids v.37 Transport properties of $CdIn_2S_4 single crystal S. Endo;T. Irizo https://doi.org/10.1016/0022-3697(76)90162-1
  3. Soviet, Physics-Semiconductors v.5 no.11 Heterojunction formation in PbS/$CdIn_2S_4 ternary solarcells S. I. Radautsan;V. F. Ihitar;M. I. Shmiglyuk
  4. J. Phys. C : Solid State Phys. v.11 Photoluminescience and photoconductivity measurements on $CdIn_2S_4 E. Grill;M. Uzzi;A. V. Moskalonov
  5. Phys. Rev. v.B31 no.4 Saturation Photoconductivity in $CdIn_2S_4 S. Charbonneau;E. Fortin
  6. J. Phys. Soc. Japan v.44 no.6 Optical absorption of Co-doped $CdIn_2S_4 M. Ueno;H. Nakanishi;T.Irie https://doi.org/10.1143/JPSJ.44.2013
  7. Solar cells v.16 Growth by directional freezing of $CdIn_2S_4 and diffused homojunctions in bulk material I. Shih;C. H. Champness;A. Vahid Shahihi https://doi.org/10.1016/0379-6787(86)90073-6
  8. J. Appl. Phys. v.57 no.2 X-ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of $CdIn_2S_4 photoelectrodes David Cahen;P. J. Ireland;L. L. Kazmerski;F. A. Thiel https://doi.org/10.1063/1.335341
  9. J. of Crystal Growth v.218 The optical properties of CdS crystal grown by the sublimation method K. J. Hong;T. S. Jeong https://doi.org/10.1016/S0022-0248(00)00491-7
  10. Thin Solid Films v.48 The optical properties of $CdIn_2S_4thin films W. Horig;H. Sobotta https://doi.org/10.1016/0040-6090(78)90332-2
  11. J. of Crystal Growth v.172 The characterization of ZnSe/GaAs epilayers grown by hot wall epitaxy K. J. Hong;T. S. Jeong https://doi.org/10.1016/S0022-0248(96)00725-7
  12. Elements of X-ray Diffractions B. D. Cullity
  13. Anorg. Allgem. Chem. v.263 Crystal Structrue and two-phonon absorption in $CdIn_2S_4$ H. Han;A. Klinger https://doi.org/10.1002/zaac.19502630406
  14. Crystal Orientation Manual Elizabeth A. Wood
  15. J. Phys. Soc. Jpn. v.20 Electron radition damage in cadium-selenide crystal at liquid-helium temperature H. Fujita https://doi.org/10.1143/JPSJ.20.109
  16. Physics v.34 Far-infrared optical absorption of $Fe^{2+}$ in ZnSe Y. P. Varshni
  17. Phys. Rev., B4 v.124 Luminescence and impurity states in $CdIn_2S_4$ B. Tell;J. L Shay;H. M. Kasper
  18. Physics of Semiconductors and their Heterostructures Jasprit Singh
  19. J. Phys. Soc. Jpn. v.33 no.6 The band structure of $CdIn_2S_4$ calculated by the pseudopotential method J. L. Shay;J. H. Wernick https://doi.org/10.1143/JPSJ.33.1561
  20. Phys. Rev. B7 v.195 The optical properties of $CdIn_2S_4$ thin films D. D. Sell;S. E. Stokowski;R. Dingle;J. V. Dilorenzo
  21. Phys. Rev. Lett. v.14 no.64 Infrared absorption and Luminescence spectra of $Fe^{2+}$ in cubic ZnS: role of the Jahn-Teller coupling R. E. Halsted;M. Aven
  22. 전기전자재료학회논문지 v.14 no.6 Hot Wall Epitaxy(HWE) 법에 의한 CuInSe₂단결정 박막 성장과 특성 홍광준
  23. 전기전자재료학회논문지 v.14 no.3 PLD 증착 변수에 따른 Ⅱ-Ⅵ족 화합물 ZnO 반도체 박막의 발광 특성 연구 배상혁;윤일구;서대식;이상렬
  24. 전기전자재료학회논문지 v.13 no.10 ZnS 형광체 분말의 결정 결함에 따른 발광 특성 연구 박용규;성현호;조황신;박대희