• Title/Summary/Keyword: Deepwater horizon

Search Result 9, Processing Time 0.026 seconds

Deepwater Horizon 사고 사례분석을 통한 심해 시추선 사고의 인적요인에 관한 연구

  • Gang, Min-Seung;Lee, Gang-Gi;Ye, Byeong-Deok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.119-121
    • /
    • 2018
  • Deepwater Horizon 사고 사례 분석을 통해 Kick 제어와 Blowout 및 인적요소 사이에 서로 관련성이 있음을 확인하였다. Deepwater Horizon 사례가 다른 시추선 사고에도 적용되는지 확인하기 위해 본 논문에서는 인적요소, Kick 제어 및 Blowout 사고와의 상관 관계에 대해 분석하였다. 분석에 사용된 사고사례는 Trident V 프로그램으로 분석된 1981년부터 2015년까지의 60건이며, 인적요소가 예측 불가한 Kick 발생 및 심각한 유정폭발에 어떠한 영향을 주는지 SPSS 프로그램을 통해서 분석하였다. 분석 결과 인적요소는 Kick의 제어에 더 많은 영향을 주는 것으로 판단되었고 이 결과를 토대로 향후 선급 및 국제표준기구의 관련 규정 개정 방안에 관해 제안하였다.

  • PDF

A Study on the Improvement of National Marine Pollution Response Policy based on the Analysis of Gulf of Mexico Oil Spill Incident (미국 멕시코만 오염사고 분석을 통한 국가방제정책 개선방안 연구)

  • Kim, Sang-Woon;Lim, Chang-Soo;Lee, Wan-Sub;Ha, Chang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • On April 20, 2010, semi-submersible offshore drilling unit Deepwater Horizon was exploded and sank, and 4.9 million barrels(about 778 thousand tons) of crude oil was spilled into the Gulf of Mexico. As more than one year has been passed since the incident, a lot of investigation reports and lessons learned have been made public and also a lot more will be released soon. This paper studies the final report of the National Commission on "the BP Deepwater Horizon Oil Spill and Offshore Drilling", which was organized by the executive directive of U.S. President Barack Obama, and the interim report of Joint Investigation team of U.S. Coast Guard and BOEMRE of "Report of Investigation into the Circumstances Surrounding the Explosion, Fire, Sinking and Loss of Eleven Members Aboard the Mobile Offshore Drilling Unit Deepwater Horizon". The review is focused on the response to the oil spill. And the paper suggests how to improve national marine pollution response policy. In the paper, the Korean governments is suggested to reinforce the capability for instructing and supervising the responsible party's source control measures, to review how to introduce in-situ burning and vessel of opportunity program into our country, and to continue monitoring on the progress of developments of R&D projects related to oil spill response in the U.S..

The Effectiveness of the Dispersant Use during the "Deepwater Horizon" Incident -REVIEW of the Proceedings from 2011 International Oil Spill Conference- (미국 멕시코만 기름유출사고에서 본 유처리제 사용의 효용성 고찰)

  • Cho, Hyun-Jin;Ha, Chang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • Once oil has spilled, oil spill responders use a variety of countermeasures to reduce the adverse effects of spilled oil on the environment. Mechanical methods of containment and recovery are preferred as the first response when the use of other methods fail or are ineffective. In these cases, the application of oil dispersants shall be use only as a last resort. While effectiveness of dispersants in removing oil form the sea surface is proven, the use of dispersants is controlled in almost all countries due to the toxicity of their active agents and the dispersed oil on the marine environment. However, according to reports, after dispersant application, no significant toxicity to fish or shrimp was observed in the field-collected samples. Moreover, the results also indicate that dispersant-oil mixtures are generally no more toxic to the aquatic test species than oil alone. During the Deepwater Horizon Incident, dispersants were applied to floating oil and injected into the oil plume at depth. These decisions were carefully considered by state and federal agencies, as well as BP, to prevent as much oil as possible from reaching sensitive shoreline habitats. Net Environmental Benefit Analysis for dispersant use assumed that dispersants appear to prevent long-term contamination resulting absence of oil in the substrate and will benefit marine wildlife by decreasing the risk of significant contamination to feathers or fur. Further study to use dispersants with scientific baseline is needed for our maritime environment which consistently threaten huge oil spill incidents occurrence.

A review of Deepwater Horizon Oil Budget Calculator for its Application to Korea (딥워터 호라이즌호 유출유 수지분석 모델의 국내 적용성 검토)

  • Kim, Choong-Ki;Oh, Jeong-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.322-331
    • /
    • 2016
  • Oil budget calculator identifies the removal pathways of spilled oil by both natural and response methods, and estimates the remaining oil required response activities. A oil budget calculator was newly developed as a response tool for Deepwater Horizon oil spill incident in Gulf of Mexico in 2010 to inform clean up decisions for Incident Comment System, which was also successfully utilized to media and general public promotion of oil spill response activities. This study analyzed the theoretical background of the oil budget calculator and explored its future application to Korea. The oil budge calculation of four catastrophic marine pollution incidents indicates that 3~8% of spilled oil was removed mechanically by skimmers, 1~5% by in-situ burning, 4.8~16% by chemical dispersion due to dispersant operation, and 37~56% by weathering processes such as evaporation, dissolution, and natural dispersion. The results show that in-situ burning and chemical dispersion effectively remove spilled oil more than the mechanical removal by skimming, and natural weathering processes are also very effective to remove spilled oil. To apply the oil budget calculator in Korea, its parameters need to be optimized in response to the seasonal characteristics of marine environment, the characteristics of spilled oil and response technologies. A new algorithm also needs to be developed to estimate the oil budget due to shoreline cleanup activities. An oil budget calculator optimized in Korea can play a critical role in informing decisions for oil spill response activities and communicating spill prevention and response activities with the media and general public.

Dynamic Response of Drill Floor to Fire Subsequent to Blowout

  • Kim, Teak-Keon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.110-119
    • /
    • 2020
  • Explosions and fires on offshore drilling units and process plants, which cause loss of life and environmental damage, have been studied extensively. However, research on drilling units increased only after the 2010 Deepwater Horizon accident in the Gulf of Mexico. A major reason for explosions and fires on a drilling unit is blowout, which is caused by a failure to control the high temperatures and pressures upstream of the offshore underwater well. The area susceptible to explosion and fire due to blowout is the drill floor, which supports the main drilling system. Structural instability and collapse of the drill floor can threaten the structural integrity of the entire unit. This study simulates the behavior of fire subsequent to blowout and assesses the thermal load. A heat transfer structure analysis of the drill floor was carried out using the assessed thermal load, and the risk was noted. In order to maintain the structural integrity of the drill floor, passive fire protection of certain areas was recommended.

Effect of gas composition on dispersion characteristics of blowout gas on offshore platform

  • Yang, Dongdong;Chen, Guoming;Shi, Jihao;Li, Xinhong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.914-922
    • /
    • 2019
  • Gas composition has a significant impact on the dispersion behavior and accumulation characteristics of blowout gas. However, few public studies has investigated the corresponding effect of gas composition. Therefore, this study firstly builds the FLACS-based numerical model about an offshore drilling platform. Then several scenarios by varying the composition of blowout gas are simulated while the scenario with the composition of "Deepwater Horizon" accident is regarded as the benchmark. Furthermore, the effects of the gas composition on the flammable cloud volume, the influenced area of flammable cloud, the influenced area of hydrogen sulfide and the critical time of the hydrogen sulfide spreading to the living area are analyzed. The results demonstrate that gas composition is a driving factor for dispersion characteristics of blowout gas. All the results can give support to reduce the risk of the similar accidents incurred by real blowouts.

A Study on the Selection of Subject Vessel for Development of Oil Recovery Equipment for Small Vessel (소형선박용 기름회수장비 개발을 위한 대상선박 선정에 관한 연구)

  • Lim, Chae-Hyun;Han, Won-Heui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.604-609
    • /
    • 2012
  • Our country has experienced some difficulties with clean up operation of massive marine oil pollution due to the lack of oil spill response equipments. And there was the case that a fishing vessel performed clean up operation had not received any proper payments because of its inefficient oil spill response operation. Thus, it is important to develop an efficient oil recovery equipment for small vessel and adopt it as a part of oil pollution prevention policy. These efforts could prepare oil spill response equipment in advance and use a fishing vessel registered in the affected area by massive marine oil pollution. Therefore, this study examines and adopts a suitable subject vessels as a first step for developing oil recovery system fitting with small vessels for national use.

Subsea Responses to the BP Oil Spill in the Gulf of Mexico (멕시코만의 BP사 오일유출 해저 대책에 대한 분석)

  • Choi, Han-Suk;Lee, Seung-Keon;Do, Chang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.90-95
    • /
    • 2011
  • On April 20, 2010, a well control event allowed hydrocarbon (oil and gas) to escape from the Macondo well onto Deepwater Horizon (DWH), resulting in an exploration and fire on the rig. While 17 people were injured, 11 others lost their lives. The fire continued for 36 hours until the rig sank. Hydrocarbons continued to flow out from the reservoir through the well bore and blowout preventer (BOP) for 87 days, causing an unprecedented oil spill. Beyond Petroleum (BP) and the US federal government tried various methods to prevent the oil spill and to capture the spilled oil. The corresponding responses were very challenging due to the scale, intensity, and duration of the incident that occurred under extreme conditions in terms of pressure, temperature, and amount of flow. On July 15, a capping stack, which is another BOP on top of the existing BOP, was successfully installed, and the oil spill was stopped. After several tests and subsea responses, the well was permanently sealed by a relief well and a bottom kill on September 19. This paper analyzes the subsea responses and engineering efforts to capture the oil, stop the leaking, and kill the subsea well. During the investigation and analysis of subsea responses, information was collected and data bases were established for future accident prevention and the development of subsea engineering.

Phytoplankton Ecosystems at Oil Spill Coasts Including the Hebei Spirit Oil Spill Site Near Taeanhaean National Park, Korea 1. Interannual Variability of Phytoplankton Community in Summer (태안해안국립공원 인근의 허베이스피리트 사고를 포함한 유류유출 해역의 식물플랑크톤 생태계 1. 하계 식물플랑크톤 군집의 연변동)

  • Yih, Wonho;Kim, Hyung Seop;Jo, Soo-Gun
    • Ocean and Polar Research
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Right after the 2007 Hebei Spirit Oil Spill phytoplankton ecosystems were investigated for 11 years based on the seasonal monitoring of the composition and abundance of phytoplankton species. Comparable time-series data from the 1989 Exxon Valdez or the 2010 Deepwater Horizon Oil Spill sites were not available. It was suggested that the ecological healthiness of phytoplankton ecosystems at EVOS sites had recovered after 10 years following the oil spill based on chlorophyll concentrations even though these concentrations only represented phytoplankton communities in most cases. Chlorophyll concentrations can only reflect limited aspects of highly complex phytoplankton ecosystems. During the last 11 years following the 2017 HSOS, extreme variabilities were met in the seasonally averaged ratios of diatoms to phototrophic flagellates including dinoflagellates based on the microscopic cell countings. Summer phytoplankton communities exhibited some cyclic interannual changes in dominant groups every 2-4 years. During the early years (2008-2010) cryptophytes or raphidophytes (Chattonella spp.) dominated alternately each year, which was repeated again in 2014, 2015 and 2017. Two thecate dinoflagellates, Tripos fusus and Tripos furca, together accounted for 52.5% and 50.0% of all organisms in the summers of 2011 and 2012, respectively, which was repeated again in 2018. Summer occurrence and dominance by the phototrophic flagellates including HABs (Harmful Algal Blooms) species as well as their interannual variabilities in the oil spill sites could be utilized as markers for the stable and long-term management of healthy ecosystems. For this type of scientific ecosystem management monitoring of chlorophyll concentrations may sometimes be insufficient to gain a proper and comprehensive understanding of phytoplankton communities located in areas where oil spills have occurred and harmed the ecosystem.