• 제목/요약/키워드: Deep-learning algorithm

검색결과 1,187건 처리시간 0.025초

AI를 이용한 지반정보 품질관리 방안에 관한 연구 (A Study on the Quality Control Method for Geotechnical Information Using AI)

  • 박가현;김종관;이석형;김민기;이경륜;한진태
    • 한국지반공학회논문집
    • /
    • 제38권11호
    • /
    • pp.87-95
    • /
    • 2022
  • 국토지반정보 포털시스템이 구축된 지반정보는 최근 설계, 시공, 지하안전관리, 재해재난 평가 등 다양한 분야에서 활용되고 있다. 그러나 전국적으로 기 구축된 약 30여만공의 지반정보는 누락되거나 잘못된 정보를 다수 포함하고 있어 데이터 활용시 신뢰도를 확보하기가 어렵다. 따라서 분석 데이터의 신뢰도를 확보하기 위해서는 지반정보를 활용하기 전 단계에서 지반정보의 정제(품질관리)가 반드시 필요하다. 본 연구에서는 딥러닝 기법 중 하나인 인공신경망 기법을 활용하여 지반정보를 자동으로 품질관리 하는 방안에 대하여 제안하였다. 특히, 가장 일반적으로 사용되는 정보인 표준관입시험 결과와 지층정보를 이용하여 지반정보의 이상치를 탐지하였다. 서울시 지반정보 데이터를 이용하여 분석하였으며, 검증데이터에 대한 오분류 비율은 5.4%로 확인되었다. 신경망 모델에서 이상치 분류된 데이터만을 추후에 검사함으로써 효율적으로 이상치를 탐지할 수 있을 것으로 기대된다.

433 MHz 대역 송신기의 인증을 위한 RF 지문 기법 (RF Fingerprinting Scheme for Authenticating 433MHz Band Transmitters)

  • 김영민;이웅섭;김성환
    • 한국정보통신학회논문지
    • /
    • 제27권1호
    • /
    • pp.69-75
    • /
    • 2023
  • 사물인터넷에 사용되는 소형 통신 기기들은 적은 메모리 용량과 느린 연산 속도 때문에 고급 암호기법을 적용하지 못하기 때문에 각종 해킹에 취약하다. 본 논문은 433MHz 대역에서 동작하는 소형 송신기들의 인증 신뢰도를 높이기 위해 RF지문을 도입하고 분류 알고리즘으로 CNN (convolutional neural network) 을 사용한다. 각 송신기가 전송하는 프리엠블 신호를 소프트웨어정의라디오를 사용하여 추출하고 수집하여 학습 데이터 집합으로 만들고, 이를 신경망을 학습시키는 데에 사용한다. 네 가지의 시나리오에서 20개의 송신기의 식별을 테스트한 결과 높은 식별 정확도를 얻을 수 있었다. 특히 학습 데이터 수집 시의 위치와 다른 위치에서 테스트를 수행한 시나리오에서, 그리고 송신기가 걷는 속도로 이동하는 시나리오에서 각각 95.8%, 92.6%의 정확도를 산출함을 알 수 있었다.

관개용수로 CCTV 이미지를 이용한 CNN 딥러닝 이미지 모델 적용 (Application of CCTV Image and Semantic Segmentation Model for Water Level Estimation of Irrigation Channel)

  • 김귀훈;김마가;윤푸른;방재홍;명우호;최진용;최규훈
    • 한국농공학회논문집
    • /
    • 제64권3호
    • /
    • pp.63-73
    • /
    • 2022
  • A more accurate understanding of the irrigation water supply is necessary for efficient agricultural water management. Although we measure water levels in an irrigation canal using ultrasonic water level gauges, some errors occur due to malfunctions or the surrounding environment. This study aims to apply CNN (Convolutional Neural Network) Deep-learning-based image classification and segmentation models to the irrigation canal's CCTV (Closed-Circuit Television) images. The CCTV images were acquired from the irrigation canal of the agricultural reservoir in Cheorwon-gun, Gangwon-do. We used the ResNet-50 model for the image classification model and the U-Net model for the image segmentation model. Using the Natural Breaks algorithm, we divided water level data into 2, 4, and 8 groups for image classification models. The classification models of 2, 4, and 8 groups showed the accuracy of 1.000, 0.987, and 0.634, respectively. The image segmentation model showed a Dice score of 0.998 and predicted water levels showed R2 of 0.97 and MAE (Mean Absolute Error) of 0.02 m. The image classification models can be applied to the automatic gate-controller at four divisions of water levels. Also, the image segmentation model results can be applied to the alternative measurement for ultrasonic water gauges. We expect that the results of this study can provide a more scientific and efficient approach for agricultural water management.

Lightweight multiple scale-patch dehazing network for real-world hazy image

  • Wang, Juan;Ding, Chang;Wu, Minghu;Liu, Yuanyuan;Chen, Guanhai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4420-4438
    • /
    • 2021
  • Image dehazing is an ill-posed problem which is far from being solved. Traditional image dehazing methods often yield mediocre effects and possess substandard processing speed, while modern deep learning methods perform best only in certain datasets. The haze removal effect when processed by said methods is unsatisfactory, meaning the generalization performance fails to meet the requirements. Concurrently, due to the limited processing speed, most dehazing algorithms cannot be employed in the industry. To alleviate said problems, a lightweight fast dehazing network based on a multiple scale-patch framework (MSP) is proposed in the present paper. Firstly, the multi-scale structure is employed as the backbone network and the multi-patch structure as the supplementary network. Dehazing through a single network causes problems, such as loss of object details and color in some image areas, the multi-patch structure was employed for MSP as an information supplement. In the algorithm image processing module, the image is segmented up and down for processed separately. Secondly, MSP generates a clear dehazing effect and significant robustness when targeting real-world homogeneous and nonhomogeneous hazy maps and different datasets. Compared with existing dehazing methods, MSP demonstrated a fast inference speed and the feasibility of real-time processing. The overall size and model parameters of the entire dehazing model are 20.75M and 6.8M, and the processing time for the single image is 0.026s. Experiments on NTIRE 2018 and NTIRE 2020 demonstrate that MSP can achieve superior performance among the state-of-the-art methods, such as PSNR, SSIM, LPIPS, and individual subjective evaluation.

SLAM을 이용한 카메라 기반의 실내 배송용 자율주행 차량 구현 (Implementation of Camera-Based Autonomous Driving Vehicle for Indoor Delivery using SLAM)

  • 김유중;강준우;윤정빈;이유빈;백수황
    • 한국전자통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.687-694
    • /
    • 2022
  • 본 논문에서는 Visual 동시적 위치추정 및 지도작성(SLAM : Simultaneous Localization and Mapping)기술을 응용하여 실내에서 생성된 SLAM 맵을 기반으로 지정된 목적지에 물건을 배달하는 자율주행 차량 플랫폼을 제안하였다. 실내에서 SLAM 맵을 생성하기 위해 소형 자율주행 차량 플랫폼의 상단에 SLAM 맵 생성을 위한 심도 카메라를 설치하고 SLAM 맵 속에서의 정확한 위치추정을 하기 위해 추적 카메라를 장착하여 구현하였다. 또한, 목적지의 표찰을 인식하기 위해 합성곱 신경망(CNN : Convolutional neural network)을 사용하여 목적지에 정확하게 도착할 수 있도록 주행 알고리즘을 적용하여 설계하였다. 실내 배송 자율주행 차량을 실제로 제작하였고 SLAM 맵의 정확도 확인과 CNN을 통한 목적지 표찰 인식 실험을 수행하였다. 결과적으로 표찰 인식의 성공률을 향상시켜 구현한 실내 배송용 자율주행 차량의 활용 적합성 여부를 확인하였다.

적외선 영상검지 기술을 활용한 고속도로 버스전용차로 단속시스템 개발 (Freeway Bus-Only Lane Enforcement System Using Infrared Image Processing Technique)

  • 장진환
    • 한국ITS학회 논문지
    • /
    • 제21권5호
    • /
    • pp.67-77
    • /
    • 2022
  • 본 연구에서는 고속도로 버스전용차로 단속시스템을 개발하여 현장 성능평가를 수행하였다. 영동고속도로 마성터널 입구 버스전용차로에서 조사한 결과, 버스전용차로를 위반하는 차량의 비율이 99%에 달하는 것으로 조사되었다. 하지만 현재의 경찰관에 의한 인력식 단속은 단속율도 낮고 불필요한 안전문제 및 지체를 발생시킨다. 고속도로 버스전용차로는 6인 이상 탑승한 9인승 이상 승합차도 통행이 가능하기 때문에 승합차량의 승차인원을 검지하는 기술개발이 필요하다. 조도에 관계없는 승차인원 검지를 위해 적외선 카메라를 사용하였고 짧은 차두시간을 감안한 신속한 영상처리 기법으로 YOLOv5 딥러닝 알고리즘을 사용하였다. 개발시스템 성능 검증을 위해 테스트베드 및 실 현장 평가를 실시한 결과, 테스트베드와 실 현장에서 각각 7%, 8% 오차를 나타내 만족할 만한 성능을 보였다. 본 연구 결과물을 현장에 적용할 경우 고속도로 버스전용차로 운영 효율화 및 단속에 따른 불필요한 지체를 감소시킬 수 있을 것으로 기대된다.

딥러닝 기술 기반의 레이더 초해상화 알고리즘 기술 개발 (Development of Radar Super Resolution Algorithm based on a Deep Learning)

  • 김호준;오랑치맥 솜야;조혜미;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.417-417
    • /
    • 2023
  • 도시홍수는 도시의 주요 기능을 마비시킬 수 있는 수재해로서, 최근 집중호우로 인해 홍수 및 침수 위험도가 증가하고 있다. 집중호우는 한정된 지역에 단시간 동안 집중적으로 폭우가 발생하는 현상을 의미하며, 도시 지역에서 강우 추정 및 예보를 위해 레이더의 활용이 증대되고 있다. 레이더는 수상체 또는 구름으로부터 반사되는 신호를 분석해서 강우량을 측정하는 장비이다. 기상청의 기상레이더(S밴드)의 주요 목적은 남한에 발생하는 기상현상 탐지 및 악기상 대비이다. 관측반경이 넓기에 도시 지역에 적합하지 않는 반면, X밴드 이중편파레이더는 높은 시공간 해상도를 갖는 관측자료를 제공하기에 도시 지역에 대한 강우 추정 및 예보의 정확도가 상대적으로 높다. 따라서, 본 연구에서는 딥러닝 기반 초해상화(Super Resolution) 기술을 활용하여 저해상도(Low Resolution. LR) 영상인 S밴드 레이더 자료로부터 고해상도(High Resolution, HR) 영상을 생성하는 기술을 개발하였다. 초해상도 연구는 Nearest Neighbor, Bicubic과 같은 간단한 보간법(interpolation)에서 시작하여, 최근 딥러닝 기반의 초해상화 알고리즘은 가장 일반화된 합성곱 신경망(CNN)을 통해 연구가 이루어지고 있다. X밴드 레이더 반사도 자료를 고해상도(HR), S밴드 레이더 반사도 자료를 저해상도(LR) 입력자료로 사용하여 초해상화 모형을 구성하였다. 2018~2020년에 발생한 서울시 호우 사례를 중심으로 데이터를 구축하였다. 구축된 데이터로부터 훈련된 초해상도 심층신경망 모형으로부터 저해상도 이미지를 고해상도로 변환한 결과를 PSNR(Peak Signal-to-noise Ratio), SSIM(Structural SIMilarity)와 같은 평가지표로 결과를 평가하였다. 본 연구를 통해 기존 방법들에 비해 높은 공간적 해상도를 갖는 레이더 자료를 생산할 수 있을 것으로 기대된다.

  • PDF

순환신경망 모델을 활용한 팔당호의 단기 수질 예측 (Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models)

  • 한지우;조용철;이소영;김상훈;강태구
    • 한국물환경학회지
    • /
    • 제39권1호
    • /
    • pp.46-60
    • /
    • 2023
  • Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.

코로나 확진자 수 예측을 위한 BI-LSTM과 GRU 알고리즘의 성능 비교 분석 (Comparative analysis of performance of BI-LSTM and GRU algorithm for predicting the number of Covid-19 confirmed cases)

  • 김재호;김장영
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.187-192
    • /
    • 2022
  • 위드 코로나의 예정 발표일이 결정되었고, 위드 코로나에 가장 중요한 조건인 백신 접종을 아직 부작용 걱정 때문에 완료하지 않은 사람들이 있다. 또한 위드 코로나로 경제는 회복될 수 있지만 감염자 수는 급증할 수 있다. 본 논문은 위드 코로나에 앞서 코로나19에 대한 경각심을 깨우고자, 코로나19를 비선형 확률과정으로 예측한다. 여기서 딥러닝의 RNN중 양방향 LSTM인 BI-LSTM와 LSTM보다 gate수를 줄인 GRU를 사용하고 이것을 train set, test set, 손실함수, 잔차분석, 정규분포, 자기 상관을 통해서 비교 분석하여 어떠한 성능이 더 좋은지 비교하고 예측한다.

딥러닝 알고리즘을 이용한 유사 판례 매칭 데이터셋 구축 방안 연구 (A Study on the building Dataset of Similar Case Matching in Legal Domain using Deep Learning Algorithm)

  • 강예지;강혜린;박서윤;장연지;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.72-76
    • /
    • 2021
  • 판례는 일반인 또는 법률 전문가가 사건에 참조하기 위해 가장 먼저 참고할 수 있는 재판의 선례이다. 하지만 이러한 판례의 유용성에도 불구하고 현 대법원 판례 검색 시스템은 판례 검색에 용이하지 않다. 왜냐하면 법률 전문 지식이 없는 일반인은 검색 의도에 부합하는 검색 결과를 정확히 도출하는 데 어려움이 있으며, 법률 전문가는 검색에 많은 시간과 비용이 들게 되기 때문이다. 이미 해외에서는 유사 케이스 매칭 데이터셋을 구축하여 일반인과 전문가로 하여금 유사 판례 검색을 용이하게 할 뿐만 아니라 여러 자연어 처리 태스크에도 활용하고 있다. 하지만 국내에는 법률 AI와 관련하여 오직 법률과 관련한 세부 태스크 수행에 초점을 맞춘 연구가 많으며, 리소스로서의 유사 케이스 매칭 데이터셋은 구축되어 있지 않다. 이에 본 논문에서는 리소스로서의 판례 데이터셋을 위해 딥러닝 알고리즘 중 문서의 의미를 반영할 수 있는 Doc2Vec 임베딩 모델과 SBERT 임베딩 모델을 적용하여 판례 문서 간 유사도를 측정·비교하였다. 그 결과 SBERT 모델을 통해 도출된 유사 판례가 문서 간 내용적 유사성이 높게 나타났으며, 이를 통해 SBERT 모델을 이용하여 유사 판례 매칭 기초 데이터셋을 구축하였다.

  • PDF