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Abstract 

 
Image dehazing is an ill-posed problem which is far from being solved. Traditional image 
dehazing methods often yield mediocre effects and possess substandard processing speed, 
while modern deep learning methods perform best only in certain datasets. The haze removal 
effect when processed by said methods is unsatisfactory, meaning the generalization perfor-
mance fails to meet the requirements. Concurrently, due to the limited processing speed, most 
dehazing algorithms cannot be employed in the industry. To alleviate said problems, a light-
weight fast dehazing network based on a multiple scale-patch framework (MSP) is proposed 
in the present paper. Firstly, the multi-scale structure is employed as the backbone network 
and the multi-patch structure as the supplementary network. Dehazing through a single net-
work causes problems, such as loss of object details and color in some image areas, the multi-
patch structure was employed for MSP as an information supplement. In the algorithm image 
processing module, the image is segmented up and down for processed separately. Secondly, 
MSP generates a clear dehazing effect and significant robustness when targeting real-world 
homogeneous and nonhomogeneous hazy maps and different datasets. Compared with existing 
dehazing methods, MSP demonstrated a fast inference speed and the feasibility of real-time 
processing. The overall size and model parameters of the entire dehazing model are 20.75M 
and 6.8M, and the processing time for the single image is 0.026s. Experiments on NTIRE 2018 
and NTIRE 2020 demonstrate that MSP can achieve superior performance among the state-
of-the-art methods, such as PSNR, SSIM, LPIPS, and individual subjective evaluation. 
 
 
Keywords: Image enhancement, Convolutional neural networks, Image processing. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                        4421 

1. Introduction 

The visual recognition system must extract accurate image features in applications. During 
the propagation process, the reflected light of the target object encounters numerous suspended 
particles in the air and interacts there with through absorption, radiation, and scattering, caus-
ing the redistribution of light energy. The collected images appear to have reduced contrast, 
covered details, and significant color distortion; low-quality images seriously impact the ef-
fectiveness of the visual system due to insufficient information. 

From employing the algorithm based on the prior knowledge to the algorithm based on deep 
learning end-to-end, the atmospheric scattering model [1] serves as a significant foundation 
theory which describes the relationship between hazy image information. 
 

I(x) = J(x)t(x) + A(1- t(x))                                            (1) 
 

Where I(x) denotes the hazy image, J(x) is the scene radiance representing the haze-free image, 
A denotes the global atmospheric light, and t(x) denotes the medium transmission. t(x) can be 
defined as follows if the global atmosphere is homogeneous, 
 

- d(x)t(x) = e β
                                                         (2) 

 
Where d(x) represents the scene depth and β is the scattering coefficient of the atmosphere. 

In the early stages of dehazing works, the most widely employed methods were those based 
on prior knowledge, such as Dark Channel Prior (DCP) [2], Maximum Contrast (MC) [3], and 
Color Attenuation Prior (CAP) [4]. However, methods perform insufficiently in dense haze 
images or complicated situations. 

Compared with the earlier methods, the performance of deep learning is superior. The early 
deep learning method, DehazeNet [5], adopts a convolutional neural network-based deep ar-
chitecture for single image haze removal, with experiments [6] articulating that the method 
possesses better processing results and faster processing speed compared to most prior meth-
ods and systems utilized to restore clear images. CNN-based methods, [7]-[11] and methods 
based on GAN architecture, [12]-[14] have been employed in numerous scenarios, such as un-
derwater circumstances [15], Nighttime Dehazing [16]-[19], Nonhomogeneous haze images 
[20]-[23], and physics-based models [24], [25]. 

During the collection and processing of hazy images, findings were made that the hazy im-
ages collected by the handheld camera on the ground, low-floor camera or low-altitude UAV 
ordinarily reveal a nonhomogeneous haze distribution. Most hazy images are targeted by ex-
isting haze removal algorithms and nonhomogeneous hazy images are synthesized by hazing 
algorithms. Hazy images are treated as nonhomogeneous hazy images requiring processing, 
but for hazy images in the real world, there are often problems such as unclean dehazing effects 
or color deviation.  

To resolve the aforementioned problems, the first layer of the multi-patch backbone frame-
work are utilized, and an image segmentation mode is employed in MSP, with segmentation 
being changed from left-right to up-down. By processing each block separated by thick and 
thin haze individually, the restoration of image information is enhanced.  
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Fig. 1. Low altitude outdoor hazy map. Images from dataset O-haze and ourselves. 
 

The following figures articulate the frequency distribution of the histogram separated by up 
and down parts in the real-world haze map. 

The illustration in Fig. 1 is divided into two parts: top and bottom. As observed in Fig. 2, 
the distribution of the upper histogram is concentrated at a high level, indicating that the im-
ages are considerably covered by haze with low contrast, and a trend towards white. Although 
most of the histogram at the bottom is distributed between 0-150bins, there is a large span of 
values and a few pixels between 200-256bins, which revealing that the bottom part of the 
image possessed three characteristics: large color contrast, color histogram values far away 
from the high area, and low haze coverage. 
 

 
(a)                                                                    (b) 

Fig. 2. Histogram of the sum of the upper(a) and lower(b) parts of the six images in Fig. 1. 
 
The main contributions of the present paper include the following: 

·Framework Multiple scale-patch (MSP) based on the original research was proposed for 
quick haze removals. Additionally, a multi-scale framework was employed as the backbone 
network, and multi-patch framework as the incidental network to supplement the image infor-
mation when training. MSP utilized the negligible increase in model parameters in exchange 
for the retention of the fundamental original image structure information following haze re-
moval. 

·Findings were made that a haze distribution difference between the lower and upper part 
of the image would occur in the real-world image. To achieve enhanced dehazing of the non-
homogeneous real-world images, the segmentation multi-patch method should be changed, 
which allowing different haze regions to be treated separately. 

·The algorithm in the present study was trained through a variety of datasets and a minute 
quantity of training images. The experimental results demonstrate generalization performance 
and rapid inference of MSP which increased the feasibility of its implementation in practical 
projects and real-time video dehazing. 

Several advanced dehazing algorithms, and the construction of the MSP model, are dis-
cussed in the following sections. In Section 2, recent related dehazing methods are introduced, 
while the architecture of MSP is illustrated in Section 3. The experiment is detailed in Section 
4, and the comparison analysis is given in Section 5. Finally, the conclusion and future research 
directions are provided in Section 6. 
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2. Related work 
The proposed dehazing methods can be classified into traditional priority-based methods and 
modern learning-based methods. 

Regarding the traditional methods, in DCP, most non-sky local areas images in the test im-
ages outside were found to have at least one channel with a low value, with the dehazing in 
the sky part failing. In CAP, a phenomenon was revealed where a linear relationship between 
image depth and brightness exists; haze density could possibly be estimated by calculating the 
difference between brightness and saturation. 

Recent deep learning dehazing methods can be classified into two categories, a) utilizing 
atmospheric scattering models, and, b) image-to-image translation. Deep learning methods 
employed a model to learn paired or unpaired hazy & clear images. After utilizing large and 
quality images for training, the model learned the residuals of the haze in the image, which 
was then used to cleanly restore the image. Based on the atmospheric scattering model, in 
DehazeNet, a model and a new nonlinear function “BReLU” were proposed to calculate trans-
mission t(x). In AOD-Net, a lightweight end-to-end model was employed, which processed 
images directly based on CNN, while an edge-preserving encoder with densely connected pyr-
amids was implemented in DCPDN to accurately estimate transmission mapping. Smooth di-
lation was utilized in GCA-Net [26] to eliminate gridding artifacts caused by dilation convo-
lution and extra parameters, and Gated Fusion was used for different levels features fusing. 
FFA-Net proposed a novelty feature attention (FA) module, which combined channel attention 
with pixel attention mechanism. FA dealed with different features and pixels unequally, 
learned feature weights adaptively from the FA module, and assigned more weights to im-
portant features. MSBDN proposed a multi-scale enhanced dehazing network with dense fea-
ture fusion based on U-NET [27], and appilied “firm-operate-subtract” enhancement strategy 
to the decoder for dehazing work. With regard to certain algorithms based on GAN, Cy-
cleDehaze [28] applied the structure of CycleGAN [29] to dehazing, employed two pairs of 
generators and discriminators for image-to-image conversion. EPDN [30] was based on multi-
scale GAN network, which placed the enhancing block in rear of the backbone network. Ad-
ditionally, in FD-GAN, a fusion-discriminator was developed that integrates frequency infor-
mation into the learning process, improved the performance of the generators, and in turn gen-
erated more realistic images from the side to obtain t(x). HIDEGAN [31] was established by 
designing an enhanced version of CycleGAN and an enhanced conditional version of GAN to 
recover clean images directly. 

Along with the traditional deep learning algorithms based on CNN and GAN, more algo-
rithms combining the knowledge of other tasks have recently emerged to solve image dehazing 
problems. To illustrate, domain adaptation [32] was utilized to dehaze the real-world hazy map, 
then, the synthesized hazy map and the real hazy map were transformed into each other to 
learn and reprocess for better dehazing effects. Two-branch [33] utilized ensemble learning 
and transfer learning to enhance the fast learning and multi-learning capacity, and realized the 
model generalization performance in multi-class environments. AECR-Net [34] utilized novel 
contrast regularization (CR) technology based on contrast learning, hazy images and clear im-
ages were employed as negative samples and positive samples, respectively. To ensure the 
restored image was similar to the clear images, and away from the position of hazy images, 
CR was employed. Method RefineDNet [35], which combines prior knowledge with deep 
learning, restores visibility through dark channel prior and adversarial learning are utilized for 
second stage processing. 
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3. Proposed Method 
In the current section, present study is introduced in detail, including the two mainly utilized 
architectures, multiple scale-patch framework, and the image segmentation that was used for 
enhanced image restoration. 

As the target network of the present study was a lightweight and fast processing network, a 
multi-scale structure was allocated to be the main lightweight fundamental framework of MSP 
with a simple structure and small number of parameters when constructing. Despite utilizing 
a multi-scale structure, no significant dehazing effect of mutil-scale model was detected, with 
the appearance of color deviation. To resolve the issue, an incidental network was employed 
to retain the image color information. However, the incidental networks were not allowed to 
irreversibly influence the network setting goals. 

Inspired by DMPHN [36], multi-patch mechanisms were applied to MSP as the information 
supplement module. To avoid increasing the number of model parameters, the image separa-
tion method of left and right in the original multi-patch structure to the upper and lower sepa-
ration method was optimized according to the prior knowledge of thick and thin haze images 
discussed in Section 1. Algorithm was optimized by MSP in terms of image color, overall 
structure, and model processing effects based on the aforementioned model improvements. As 
each module possessed a unique function, singular module will not yield the best effects of 
haze removal. 

3.1 Backbone Multi-scale Architecture 
A three-layer network structure similar to DMPHN was utilized in the present study, but MSP 
changed the multi-patch method to multi-scale, and learned image features through the same 
encoding and decoding operation of different sizes image. In recent years, said structure has 
been widely employed in dehazing and low-level image processing.  

The main framework was divided into three layers, each layer contained the same content 
but a different size hazy map input. The structure layout is as follows, the input hazy map IL1 
of the first layer was two times and four times the hazy map IL2 of the second layer and the 
hazy map IL3 of the third layer. In each layer, MSP entered the images into the Encoders of -
1, -2, and -3 to obtain the feature map, and then the above sampling was fused with the upper 
network feature information to retain more image information. Additionally, the image after 
processed by the Decoders of -1, -2 and -3 served as the information compensation of the input 
image on the upper layer to achieve the same purpose. To avoid complicating the overall model, 
only simple connections and information fusion strategies were employed. 

Regarding the encoder in the algorithm of DMPHN across the connection, particularly the 
way in which information in the low level was reserved and transferred to the high-level in-
formation, was beneficial for preserving image information. Despite said benefits, considering 
the few scaling times and network layers, the upsampling reservation of the intermediate map 
was implemented to the third and second layers of the mutli-scale portion in the MSP to pre-
vent gradient explosion during the training process. 

3.2 Incidental Multi-patch Architecture 
In the original backbone network experiment, the results revealed a color deviation and detail 
feature loss and multi-patch was also used as a reference for the DMPHN. Additionally, the 
original network efficiency comparison of different levels was utilized. A multi-layer patch to 
incidental network was employed to improve the overall efficiency and retain the lightweight 
goals of the model. The results of the experiment on DMPHN revealed that the size of the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                        4425 

structure of the model increased exponentially when the hierarchy deepened. The optimal 
structure of the processing speed and haze removal effect was 1_2_4, but for the attached 
network, a 1_2 network structure was selected in the present study to avoid increasing the 
complexity of the model. The results of the DMPHN experiment revealed that the 1_2 struc-
ture sacrificed 1.5% PSNR and 0.7% SSIM parameters in exchange for reducing the size of 
the model by half and the running time by two-thirds. 

Regarding the ordinary synthetic image with haze, the haze addition algorithm utilizes ho-
mogeneous white noise points as haze in the image, while most existing algorithms directly 
remove homogenous haze through the atmospheric scattering model. Such algorithms are in-
effective in dealing with real-world, nonhomogeneous or dense haze images.  

Fort achieving better results the application of multi-patch as the incidental network was 
also to implement the purpose of processing image parts with different degrees of ambiguity 
separately in the original images, which also demonstrates the correctness of the present theory. 
 

 
 

Fig. 3. The architecture of the MSP’s model. Image IL1 is the raw input. Three-tier encoder and de-
coder structure, in which module information is not shared. The information in supplement connection 

is the same as the original information. Residual Information Addition employs concatenate opera-
tions. 
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Fig. 4. The architectural of Encoder-Decoder. Each CIRC that does not display the number of chan-
nels is the same as the previous CIRC that displays the number of channels. Since the study was lim-

ited to equipment, batch size is 4 and IN has been utilized instead of BN. 
 

The left and right segmentation method of multi-patch was changed into upper and lower seg-
mentation, and applied to the dehazing tasks. Further, distant and near haze were separated to 
obtain better haze removal effect for the real-world hazy map. The novel image segmentation 
has overcome the sky color distortion existing in the previous algorithms, in addition to the 
problem of the distant object haze removal impurity or the object edge residual haze. Overall, 
more accurate information learned by image segmentation in the affiliated network was trans-
mitted to the main network to complement the details of image information. By sacrificing the 
negligible computational complexity and the increase of inference time, a more accurate func-
tion of dehazing color restoration and object information retention could be obtained. 

3.3 Encoder-Decoder Module 
MSP employed an encoder consisting of 15 convolutional layers, 6 instance normalization 
blocks and 6 ReLU activation units. The maximum number of channels after convolution 
could reach 128. For the decoder, 13 convolutional layers, 2 deconvolutional layers, 6 instance 
normalization blocks and 6 ReLU activation units were set, among which the convolutional 
layer connecting the two modules became deconvolution to achieve the purpose of better im-
age recovery. 

MSP refers to the encoder-decoder structure of DMPHN, but changes the method of con-
volution + activation function + convolution to CIRC module for extracting image features. 
For MSP, IN (Instance normalization) in CIRC was chosen due to the small mini-patch input 
value, in addition to IN for a small amount of training data being more beneficial. 

3.4 Network Architecture 
Image information transmission starts from the third layer. The feature map F3 generated after 
image IL3 through Encoder-3 will be shared and transferred to the upper layer for fusion and 
decoding. The generated image output O3 after feature map is decoded by Decoder-3, 
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3 3 L3

3 3 3

F = Encoder (I )
O = Decoder (F )

                                                         (3) 

While O3 is taken as the input of the second layer after upscaled by factor of 2, O3 and IL2 are 
fed into Encoder-2 to obtain the temporary feature map FT2. Then F3 and FT2 are combined 
into the second feature map F2 and processed by Decoder-2 to generate output in the second 
layer O2. 

 
T2 2 L2 3

2 T2 3

2 2 2

F Encoder (I Upscale(O ))
F F Upscale(F )

O Decoder (F )

= +
= +
=

                                        (4) 

In the first layer, MSP is completed by combining the backbone multi-scale network with 
multi-patch network parts. To distinguish parameters, * was added to the partial variables of 
multi-patch network. The input image of multi-patch part is the same as that of IL1, which is 
divided into upper and lower parts IL1-1 and IL1-2. Similar to the trunk network, IL1-1 and IL1-2 
were fed into Encoder*1 simultaneously to obtain the feature graph F*1, and then F*1 obtained 
O*1 through Decoder*1, in which F*1 and O*1 are provided to the first layer of the trunk net-
work as the output of the incidental network. 

1 L1-1 L1-2

1 1

F* = Encoder *1(I ) + Encoder *1(I )
O* = Decoder *1(F* )

                                        (5) 

In the backbone of network, upscaled O2, O*1 and IL1 are combined, then fed into Encoder-1 
to obtain temporary feature graph FT1. F*1, FT1 and F2 after upscale are combined to generate 
the feature map F1 of the first layer. The network will process F1 through Decoder-1 to gener-
ate the final dehazed image I. 

T1 1 L1 2 1

1 T1 2 1

1 1

F = Encoder (I + Upscale(O ) + O* )
F = F + Upscale(F ) + F*
I = Decoder (F )

                                                 (6) 

3.5 Loss Function 
Multiple types of loss functions were adopted and combined with different weights. The train-
ing loss for the present model was comprised of the combination of L1 and L2 loss term, a 
perceptual loss term, and a TV loss term.  as formulated below: 
 

total a 1 2 b p c tvL L L L+= λ + λ + λ                                              (7) 
 

Where the value of λa is set as 1, the value of λb is 0.006, and the value of λc is 2e-8. Among 
said losses, the combination loss, as the pixel-level loss, is the most significant factor, and 
restoration can shorten the distance between pixels. However, the loss of pixels alone is not 
sufficient, visual loss is needed to perfect the balance between the advanced information of 
images, and, the total variation loss function was adopted to keep the edge of the image smooth 
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and suppress the image noise. 

3.5.1 L1 and L2 Loss 
The combination of the non-smooth L1 loss function and L2 smooth loss function preserves 
the fast convergence and convergence smoothing ability of the L2 function, and complements 
the disadvantage of L1's ability to find the optimal value but easily unstable derivative at zero. 
Combination loss is used here to make the dehazing image closer to the original ground truth. 
Weights were assigned to the two loss functions, respectively, as: 
 

1 2 1 1 2 2L L L+ = λ + λ                                                          (8)         
                             

Where the value of λ1 is set as 0.6 and the value of λ2 is set as 0.4. 

3.5.2 Perceptual Loss 
Perceptual loss was employed for better image information restoration, which utilized to com-
pare the feature obtained by the real image with the feature obtained by the generated image, 
so the high-level information (content and global structure) is close.  
 

N

P i i 1
i 1

L || (G(I )) (J ) ||
=

= φ −φ∑                                                    (9)    

                               
φ() represents the feature maps obtained by the ReLu1_2 layer within the VGG16 network. 

3.5.3 TV Loss 
Total variation loss is a common regular term and needs to be added to the algorithm to main-
tain the smoothness of the image object edge. TV loss was employed to work with other losses 
to constrain hazy noise. 
 

tv x 2 y 2
ˆ ˆL || I || || I ||= ∇ + ∇                                                           (10) 

4. Experiment 

4.1 Datasets 
As collecting a large number of real-world hazy images and corresponding haze-free counter-
parts is impractical, synthetic hazy images generated by algorithms have been extensively used. 
The number and quality of images in datasets determine the effect of the deep learning model 
and appropriate training dataset will improve the model performance which is superior to the 
improvement on algorithm. 

To test the robustness of the network on low altitude real world hazy maps, NTIRE18 [37], 
which includes indoor and outdoor hazy images. and NH-HAZE [38], which contains 55 im-
ages of nonhomogeneous haze for the train and test dataset, were adopted. The NTIRE dataset 
contains 70 training images and 5 test images, and NH-HAZE contains 50 training images and 
5 test images. Multi-dataset testing could demonstrate the generalization performance of the 
present model. 

Other available datasets include: RESIDE [39], D-HAZE [40], I-HAZE [41], O-HAZE [42], 
HazeRD [43], KITTI [44], and BeDDE [45]. 
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4.2 Data Preparation 
Due to the small number of images in the dataset, the dataset was expanded. Each image of 
size 1024×1024 in dataset NTIRE2018 was divided into 16pcs×256×256 smaller images on 
average to be used as the training set, and the total number of images after augmentation was 
1120. As for NTIRE2020, the nonhomogeneous haze dataset was augmented. Similar to the 
previous dataset, the original 50 training images with a size of 1600×1200 were replaced with 
800 images with a size of 400×300. 

4.3 Implementation Details 
The MSP model was adopted to train for 500 epochs with the Adam optimizer on NTIRE18, 
and train for 800 epochs on the NH-HAZE dataset. The default initial learning rate was set to 
1×10-5. The batch size of 4 was adopted to manipulate the images more finely. The testing part 
imported RGB images with size of 1024×1024×3. The network was trained and tested by deep 
learning framework Pytorch with Nvidia GTX 1660 SUP. 

4.4 Metric 
The objective evaluation of the effect of image dehazing was to employ quantitative measure-
ment methods to automatically evaluate the image quality, so as to obtain parameters reflecting 
the quality or the degree of loss as the evaluation result. The comparison of the result image 
and ground truth is the real distance and metrics.  

SSIM 
Structural Similarity Index Measure is an index to evaluate the loss and distortion of the fused 
image, and consists of three parts: correlation loss, brightness and contrast distortion. 

PSNR 
Peak signal to noise ratio is an objective standard for evaluating images, and is generally used 
for an engineering project between the maximum signal and background noise. 

LPIPS 
Through learned perceptual image patch similarity [46], the features extracted from the net-
work structure of the model could be measured to obtain judgments that are more consistent 
with human perception. The feature difference between the real sample and the generated sam-
ple in the model was analyzed, and the difference was calculated in each channel using L2. 
LPIPS uses the weight sum of all channels. 

4.5 Color Disk Contrast 
To detect the algorithms recovery effect for image information, color disk in the test image 
was captured. From the perspective of the image recovery process, most of the existing meth-
ods reveal the overall image tends to dark in the image color recovery under the circumstances 
of dense haze. and image restoration color also possesses different degrees of deviation result 
from unclean haze removal. The observation of the MSP color disk after haze removal demon-
strates that, due to the supplement of the incidental network in the MSP, the color information 
of the image was slightly deviated. 
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(a)hazy                        (b)DCP                 (c)DehazeNet 

     
(d)AOD-Net                 (e)GCANet                 (f)EPDN 

     
(g)FFA-Net                     (h)MSP                        (l)GT 

Fig. 5. The results of various dehazing algorithms on the NH-HAZE dataset. 

4.6 Image Evaluation 
Results on NTIRE18. From Fig. 6, an observation can be made that a large area of haze 
remained in the image after being processed by DehazeNet and AOD-Net, bringing little vis-
ual improvement to the image before and after dehazing. Image color deviation is also present. 
At the same time, an observation can be made from the numerical comparison in Table 1 that 
AOD-Net and DehazeNet were lagging behind in indicators. 

The overall color of the image tended to be blue after GCANet, with the haze removal 
processing in some small areas being incomplete and the image color being deviated. Despite 
improving on all three metrics, GCANet did not reach the level of ideal perception. Compared 
with DehazeNet and AOD-Net, EPDN achieved restored images with higher quality and con-
struction details of the image object being well preserved. However, EPDN failed to effec-
tively dehaze under dense haze conditions, and the overall color of the image after haze re-
moval was partial to dark. Images dehazed by FFA-Net, there was some residual haze left in 
the images, where the color information was lost to a certain extent. MSBDN dehazing effect 
is not observable enough, especially in dense areas, but there is no serious color deviation 
phenomenon. Two-Branch’s image visual effect was acceptable, but the color recovery was 
incomplete. MSP significantly reduced the runtime of the dehazing process, the overall color 
of image was brighter, a better precondition for subsequent operation was provided. MSP also 
removed the haze in the dense haze area, and supplemented the knowledge learned from the 
training dataset to complete the information of the significantly lost area in the image to the 
greatest extent. 
Results on NH-HAZE. In comparing the state-of-the-art results of the algorithms in NH-HAZE, 
DehazeNet and AOD-Net, which are based on prior knowledge in whole or in part, said algo-
rithms had little effect on nonhomogeneous hazy images, and the strategy to improve the con-
trast had little effect on the dataset. GCA-Net was similar to the previous two methods, where 
the image contrast was excessively enhanced after dehazing, but the visualization 
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NTIRE18 (main) 

         
 

         
 

         
 

         
 

         
(a)Hazy     (b)DehazeNet(c)AOD-Net (d)GCANet    (e)EPDN     (f)FFA-Net (g)MSBDN(h)Two-Branch  (i)MSP          (j)GT 

Fig. 6. The results of various dehazing algorithms on dataset NTIRE18 
 

Table 1. The experimental results comparison as follows, where AR represents the average processing 
time of a single image, including model and image import, processing and saving time. 

  

Methods\Metric PSNR SSIM LPIPS AR (s) Parameters 

DehazeNet 16.20 0.66 0.33 7.94 × 

AOD-Net 15.21 0.62 0.35 2.94 0.0017M 

GCANet 16.27 0.68 0.31 5.04 0.7M 

EPDN 17.03 0.70 0.29 2.10 16M 

FFA-Net 12.93 0.51 0.49 5.47 4M 

MSBDN 19.70 0.70 0.32 0.78 29.9M 

Two-Branch 19.50 0.58 0.53 5.56 50M 

Our Model 20.11 0.67 0.19 1.29 6.8M 

Ground Truth +∞ 1.00 0.00 × × 
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NH-HAZE 

 
 

 
 

 
 

 
 

 
(a)Hazy       (b)DehazeNet (c)AOD-Net (d)GCANet    (e)EPDN      (f)FFA-Net  (g)MSBDN (h)Two-Branch   (i)MSP           (j)GT 

Fig. 7. The results of various dehazing algorithms on dataset NH-HAZE. 
 

Table 2. The experimental results comparison. 
  

Methods\Met-
ric PSNR↑ SSIM↑ LPIPS

↓ AR(s)↓ Parameters 

DehazeNet 12.34 0.42 0.56 13.30 × 

AOD-Net 13.02 0.41 0.57 3.84 - 

GCANet 14.25 0.51 0.49 1.67 - 

EPDN 14.50 0.53 0.47 1.85 - 

FFA-Net 12.56 0.42 0.61 4.69 - 

MSBDN 13.91 0.48 0.54 1.28 - 

Two-Branch 19.53 0.52 0.58 6.73 - 

Our Model 16.69 0.61 0.34 1.31 - 

Ground Truth +∞ 1.00 0.00 × × 
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improved, which is consistent with the numerical comparison in Table 2. The results of EPDN, 
FFA and MSBDN are similar to those of NTIRE18. 

From a subjective perspective, two-branch achieved a better visual effect. However, due to 
excessive attention to the local features and pixel-level information, and slight consideration 
to structural balance between image blocks. The performance of the two-branch method in 
SSIM declined. MSP obtained a brighter visual effect and the fastest processing efficiency. 
Only a few areas emerge hazy, and nonhomogeneous haze was decomposed and processed 
separately in the multi-scale-patch framework. As shown in Table 2, MSP achieved prominent 
results on most metrics. 

5. Ablation Study 

 
(a)hazy          (b)               (c)                (d)               (e)               (f)                (g)           (h)GT 

Fig. 8. The results of different network structure adjustment on dataset NTIRE18. 
 

Table 3. Network architecture adjustment and comparison 
 

To demonstrate the effectiveness and superiority of the proposed multiple scale-patch frame-
work, an ablation study was conducted by gradually modifying the baseline model and com-
paring the performances of all models. 

For the comparison of the two datasets including 70pcs×1024×1024 and 1120pcs×256×256, 
there were three different designs: (1) The baseline: multi-scale, (2) Multi-scale-patch, and (3) 
MSP. For fair comparison, the same network architecture and training setting parameters were 
kept for all of the aforementioned models, except the modification depicted in Table 3. 

The experimental results are shown in Fig. 8 and Table 3. The test images were from the 
NTIRE18 dataset. Compared with the baseline, the MSP model obtained by training with the 
multiple scale-patch structure exhibited improvements on three metrics. The most significant 
improvement was 13.5% on the SSIM metric, demonstrating the model quality of the proposed 
framework was improved after training. In control groups (d) and (g), 24.13% PSNR, 25.22% 
SSIM and 61.53% LPIPS parameters were improved by sacrificing 0.005s processing time for 
single images and the improvement in image quality was worth the trade-off. In order to 

 PSNR↑ SSIM↑ LPIPS↓ AR(s)↓ RT(s)↓ 

70*(1024*1024) 
Trainset for 

Epoch = 1200 

Baseline Multi-s (b) 16.43 0.60 0.53 1.29 0.018 

Baseline + Multi s-p (c) 17.53 0.66 0.51 1.28 0.020 

Baseline + Multi s-p + sup-
plement connection (d) 20.43 0.67 0.37 1.29 0.026 

1120*(256*256) 
Trainset for 
Epoch = 600 

Baseline Multi-s (e) 16.84 0.51 0.52 1.28 0.018 

Baseline + Multi s-p (f) 17.33 0.60 0.47 1.28 0.019 

Baseline + Multi s-p + sup-
plement connection (g) 20.87 0.72 0.28 1.30 0.026 
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demonstrate the robustness of MSP in the small dataset, 70 training images were used to train 
models with defective experimental results, but better results than other methods were 
achieved, which also demonstrates the feasibility of the present model training on small da-
tasets. 

6. Conclusion 
This paper has summarized and discussed the issues exist in present dehazing methods. Pro-
posed MSP has achieved superior results in generalization performance and industrial trans-
plant ability compare to the most said algorithms supported by the current findings. The key 
to a lightweight and fast dehazing network is utilizing multi-scale-patch architecture, which is 
a simple-constructed and effective feature extractor and complementor that maintains images’ 
detailed edges and textures. Meanwhile, an improved image segmentation method aiming at 
the common features of hazy map in the real world is proposed and utilized for better pro-
cessing effect. Predominant experiment and ablation study demonstrate that the MSP outper-
forms the algorithms for comparison in terms of most metrics, especially in inference time for 
real-world dehazing and the frame superiority. 

More information on expanded dataset and particular modules would help us to establish a 
greater degree of precision restoration and inference speed on this matter according to usage 
scenarios. The MSP-based video dehazing algorithm in the real scene is also what we are 
currently researching in. 
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