• Title/Summary/Keyword: Deep tunnel

Search Result 339, Processing Time 0.031 seconds

The Application and Geo-Enviromental Effect on TAS Method (TAS공법의 적용성과 지반환경 영향)

  • Chun, Byung Sik;Yeoh, Yoo Hyeon;Baik, Jung-Shik;Choi, Choon-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.27-36
    • /
    • 2002
  • Generally, it is known that urethane injection is excellent in long-term durability and environment friendly for ground improvement. However, urethane grouting has short rise time thus the penetration distance from the injection point is so short. Therefore, urethane injection cannot be used for the site where requires ground improvement in deep location from the injection point. Other injection materials such as cement cannot be alternatives when rapid hardening is required. From this study, we improve disadvantage urethane injection by developing TAS method. From the field tests, it is ascertained that TAS increases injection distance over 10m, which is further than that of original urethane grouting. In addition, TAS has relatively short Rise-time compared to cement grouting thus instantaneous improvement can be mobilized right after the injection. Short Rise-time and long penetration distance provide excellent applicability for tunnel construction.

  • PDF

Transparent Nano-floating Gate Memory Using Self-Assembled Bismuth Nanocrystals in $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN) Pyrochlore Thin Films

  • Jeong, Hyeon-Jun;Song, Hyeon-A;Yang, Seung-Dong;Lee, Ga-Won;Yun, Sun-Gil
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.20.1-20.1
    • /
    • 2011
  • The nano-sized quantum structure has been an attractive candidate for investigations of the fundamental physical properties and potential applications of next-generation electronic devices. Metal nano-particles form deep quantum wells between control and tunnel oxides due to a difference in work functions. The charge storage capacity of nanoparticles has led to their use in the development of nano-floating gate memory (NFGM) devices. When compared with conventional floating gate memory devices, NFGM devices offer a number of advantages that have attracted a great deal of attention: a greater inherent scalability, better endurance, a faster write/erase speed, and more processes that are compatible with conventional silicon processes. To improve the performance of NFGM, metal nanocrystals such as Au, Ag, Ni Pt, and W have been proposed due to superior density, a strong coupling with the conduction channel, a wide range of work function selectivity, and a small energy perturbation. In the present study, bismuth metal nanocrystals were self-assembled within high-k $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN) films grown at room temperature in Ar ambient via radio-frequency magnetron sputtering. The work function of the bismuth metal nanocrystals (4.34 eV) was important for nanocrystal-based nonvolatile memory (NVM) applications. If transparent NFGM devices can be integrated with transparent solar cells, non-volatile memory fields will open a new platform for flexible electron devices.

  • PDF

Seismic performance evaluation of Precast Concrete Lining (PCL) using the 1/5 scale down model test (1/5축소 모형실험에 의한 조립식 터널라이닝 (PCL)의 내진성능 평가)

  • Lee, Yong-Jun;Chung, Hyung-Sik;Lee, Doo-Hwa;Jo, Byung-Wan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • Precast Concrete Lining (PCL) is invented in order to resolve the problem of the cast-in-place concrete lining in Norway, However PCL could not consider the effect of earthquake because an earthquake rarely occurs in the region of Northern Europe, Consequently, the analysis of the effect of earthquake on PCL should be made before introducing PCL to Korea. The purpose of this research is to evaluate the stability of tunnel applying PCL in the case of earthquake. To evaluate the seismic performance of PCL, we used shaking table apparatus by 1/5 scale down model. The result of this research is as shows that deep tunnells satisfied for Korea seismic design criteria.

  • PDF

Elasto-plastic Analysis and In-situ Measurement on Rock Behaviors with Stepwise Excavation of the Steep Soft Seam at a Great Depth (심부 급경사 연약층의 채굴 진행에 따른 주변 암반 거동의 탄소성 해석 및 현장계측)

  • 정소걸;신중호
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.295-303
    • /
    • 2004
  • For the deep underground excavation site with the geological complexity of soft seam and hard rock, the numerical analysis and in-situ measurement on the behaviors of roadway and surrounding rock according to stepwise excavation of the steep soft seam are carried out. The strata behavior is modeled using elasto-plastic FEM considering the empirical failure criteria of Hoek & Brown and the strain-softening model. Hydraulic pressure capsule, MPBX and tape extensometer are installed around the roadway for the in-situ measurement of rock stress and deformation. Despite the complexity of geology and excavation procedure, the elasto-plastic analysis considering the empirical failure criteria of Hoek & Brown and the strain-softening model shows good agreement with the in-situ measurement. Comparison of numerical modeling with in-situ measurement enables to predict the behaviors of the roadway and to obtain design parameters for the excavation and support at depth.

A Boundary Element Analysis for Damage and Failure Process of Brittle Rock using ERACOD (FRACOD를 이용한 취성 암석의 손상 및 파괴에 대한 경계요소 해석)

  • ;Baotang Shen;Ove Stephansson
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.248-260
    • /
    • 2004
  • Damage in brittle rock due to stress increase starts from initiation of microcracks, and then results in failure by forming macro failure planes due to propagation and coalescence of these discrete cracks. Conventionally, continuum approaches using macro-failure criteria or a number of elasto-plastic models have been major solution to implement rock damage and failure. However, actual brittle failure processes can be better described in phenomenological approach if initiation and propagation of discrete fractures are explicitly considered. This study presents damage and failure process of rock using a boundary element code, FRACOD, which has been developed to model fracturing process of rocks. Through a series of numerical uniaxial compressive tests, the feasibility of the developed model was verified, and realistic rock failure process was reproduced considering scale effects in rocks. In addition, the fracturing process and the corresponding rock damage in the vicinity of deep shaft in rock mass were presented as an application of this approach. This approach will be expected to contribute to finding better engineering solutions for the analysis of stability problems in brittle rock masses.

Study of Brittle Failure (취성파괴에 관한 고찰)

  • Cheon, Dae-Sung;Synn, Joong-Ho;Jeon, Seo-Kwon;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.437-450
    • /
    • 2006
  • Failure around an underground opening is a function of in-situ stress magnitudes, intact rock strength and the distribution of fractures in the rock mass. At high in-situ stress, the failure process is affected and eventually dominated by stress-induced fractures preferentially growing parallel to the excavation boundary. This fracturing is often observed in brittle type of failure such as slabbing or spatting. Recent studies dies on the stress-induced damage of rock revealed its importance especially in a highly stressed regime. As the constructions of underground structures at deep depths increased, the cases of the brittle failure also increased and furthermore spalling was occurred in Korea at low depths. To improve the stability of the underground structures at highly stressed regime, the characteristics of brittle failure should be examined, but they have not yet been properly investigated. Therefore in this report the characteristics of brittle failure such as types, failure mechanism and modeling methods etc. were considered in all aspects, based on the previous researches.

Development of a 4D Information based Integrated Management System for Geothermal Power Plant Drilling Project (지열발전 시추프로젝트의 4D 정보화기반 통합관리 시스템 개발)

  • Lee, Seung Soo;Kim, Kwang Yeom;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.234-242
    • /
    • 2014
  • Deep drilling project should be managed systematically and efficiently because it is significantly influenced by various related factors having uncertainty and high risk in terms of economy and effective management. In particular, drilling project involves participants from various sectors including necessary service company and it also needs their collaboration by sharing related information occurring at drilling process in order to secure efficient performance management. We developed 4D (3D + time) information based visualization system for progress management by combining 3D design model and predicted optimized control parameters for each section in geothermal well design. We also applied PDM (precedence diagramming method) to the system in order to setup the effective process model and hooked it up to 3D information based on precedence relation and required time for informatized process network.

A Study on Evaluation of Thermal Environment using Heat Stress Indices for Deep Coal Mine in Korea (열적지표를 적용한 국내 고심도 석탄광산의 열환경 평가 연구)

  • Park, Seon-Oh;Roh, Jang-Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.166-175
    • /
    • 2014
  • In this study, the thermal environment in a large scale coal mine located in Taebaek, Gangwondo was assessed by a field survey. In order to estimate the thermal environment, various heat stress indices such as WBGT, HSI, ESI, KATA index and effective temperature were investigated. Correlation analysis was also conducted. It was found that the thermal environment in most workplace was high. In particular, the correlation coefficient between HSI reflected in physiological fatigue characteristic and the maximum sweat evaporation heat was -0.834. This shows that the correlation coefficient have the most influence on HSI index. The factor which has the most influence on the maximum sweat evaporation heat is velocity of air. The thermal environment of high-depth coal mines is likely to be improved by installing a structure that enables the maximum prevention of extended digging, air doors, or the leakage of the inflow of air in the first shaft.

A Study on the Temperature Distribution Change of the Spent Nuclear Fuel Disposal Canister and its Surrounding Structures due to the Spent Fuel Heat according to the Deposition Time Elapse (고준위폐기물 열에 의한 처분용기 및 처분용기 주위 구조물의 시간경과에 따른 온도분포 변화)

  • Choi, Jong-Won;Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.157-164
    • /
    • 2007
  • The prediction of the temperature distribution change of the spent nuclear fuel disposal canister and its surrounding structures (bentonite buffer, granitic rock etc.) due to the spent fuel heat is very important for the design of the 500m deep granitic repository for the spent nuclear fuel disposal canister (about 10,000 years long) deposition. In this study, the temperature distribution change of the composite structure which comprises the canister, the bentonite buffer, the deposition tunnel due to the spent fuel heat is computed using the numerical analysis method. Specially, the temperature distribution change of the composite structure is analysed as the deposition time elapses up to m years. The analysis result shows that the temperature of each part of the repository increases slowly in different way but the latest part temperature increases slowly up to 150 years and thereafter decreases slowly.

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF