• Title/Summary/Keyword: Deep learning based control

Search Result 237, Processing Time 0.024 seconds

A Study on Building a Scalable Change Detection System Based on QGIS with High-Resolution Satellite Imagery (고해상도 위성영상을 활용한 QGIS 기반 확장 가능한 변화탐지 시스템 구축 방안 연구)

  • Byoung Gil Kim;Chang Jin Ahn;Gayeon Ha
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1763-1770
    • /
    • 2023
  • The availability of high-resolution satellite image time series data has led to an increase in change detection research. Various methods are being studied, such as satellite image pixel and object-level change detection algorithms, as well as algorithms that apply deep learning technology. In this paper, we propose a QGIS plugin-based system to enhance the utilization of these useful results and present an actual implementation case. The proposed system is a system for intensive change detection and monitoring of areas of interest, and we propose a convenient system expansion method for algorithms to be developed in the future. Furthermore, it is expected to contribute to the construction of satellite image utilization systems by presenting the basic structure of commercialization of change detection research.

A study on the improvement of artificial intelligence-based Parking control system to prevent vehicle access with fake license plates (위조번호판 부착 차량 출입 방지를 위한 인공지능 기반의 주차관제시스템 개선 방안)

  • Jang, Sungmin;Iee, Jeongwoo;Park, Jonghyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.57-74
    • /
    • 2022
  • Recently, artificial intelligence parking control systems have increased the recognition rate of vehicle license plates using deep learning, but there is a problem that they cannot determine vehicles with fake license plates. Despite these security problems, several institutions have been using the existing system so far. For example, in an experiment using a counterfeit license plate, there are cases of successful entry into major government agencies. This paper proposes an improved system over the existing artificial intelligence parking control system to prevent vehicles with such fake license plates from entering. The proposed method is to use the degree of matching of the front feature points of the vehicle as a passing criterion using the ORB algorithm that extracts information on feature points characterized by an image, just as the existing system uses the matching of vehicle license plates as a passing criterion. In addition, a procedure for checking whether a vehicle exists inside was included in the proposed system to prevent the entry of the same type of vehicle with a fake license plate. As a result of the experiment, it showed the improved performance in identifying vehicles with fake license plates compared to the existing system. These results confirmed that the methods proposed in this paper could be applied to the existing parking control system while taking the flow of the original artificial intelligence parking control system to prevent vehicles with fake license plates from entering.

Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.29-40
    • /
    • 2022
  • In this paper, we studied a system that detects and analyzes the pathological features of diabetic retinopathy using Mask R-CNN and a Random Forest classifier. Those are one of the deep learning techniques and automatically diagnoses diabetic retinopathy. Diabetic retinopathy can be diagnosed through fundus images taken with special equipment. Brightness, color tone, and contrast may vary depending on the device. Research and development of an automatic diagnosis system using artificial intelligence to help ophthalmologists make medical judgments possible. This system detects pathological features such as microvascular perfusion and retinal hemorrhage using the Mask R-CNN technique. It also diagnoses normal and abnormal conditions of the eye by using a Random Forest classifier after pre-processing. In order to improve the detection performance of the Mask R-CNN algorithm, image augmentation was performed and learning procedure was conducted. Dice similarity coefficients and mean accuracy were used as evaluation indicators to measure detection accuracy. The Faster R-CNN method was used as a control group, and the detection performance of the Mask R-CNN method through this study showed an average of 90% accuracy through Dice coefficients. In the case of mean accuracy it showed 91% accuracy. When diabetic retinopathy was diagnosed by learning a Random Forest classifier based on the detected pathological symptoms, the accuracy was 99%.

Development of a Simulator for Optimizing Semiconductor Manufacturing Incorporating Internet of Things (사물인터넷을 접목한 반도체 소자 공정 최적화 시뮬레이터 개발)

  • Dang, Hyun Shik;Jo, Dong Hee;Kim, Jong Seo;Jung, Taeho
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.4
    • /
    • pp.35-41
    • /
    • 2017
  • With the advances in Internet over Things, the demand in diverse electronic devices such as mobile phones and sensors has been rapidly increasing and boosting up the researches on those products. Semiconductor materials, devices, and fabrication processes are becoming more diverse and complicated, which accompanies finding parameters for an optimal fabrication process. In order to find the parameters, a process simulation before fabrication or a real-time process control system during fabrication can be used, but they lack incorporating the feedback from post-fabrication data and compatibility with older equipment. In this research, we have developed an artificial intelligence based simulator, which finds parameters for an optimal process and controls process equipment. In order to apply the control concept to all the equipment in a fabrication sequence, we have developed a prototype for a manipulator which can be installed over an existing buttons and knobs in the equipment and controls the equipment communicating with the AI over the Internet. The AI is based on the deep learning to find process parameters that will produce a device having target electrical characteristics. The proposed simulator can control existing equipment via the Internet to fabricate devices with desired performance and, therefore, it will help engineers to develop new devices efficiently and effectively.

Conventional Versus Artificial Intelligence-Assisted Interpretation of Chest Radiographs in Patients With Acute Respiratory Symptoms in Emergency Department: A Pragmatic Randomized Clinical Trial

  • Eui Jin Hwang;Jin Mo Goo;Ju Gang Nam;Chang Min Park;Ki Jeong Hong;Ki Hong Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.3
    • /
    • pp.259-270
    • /
    • 2023
  • Objective: It is unknown whether artificial intelligence-based computer-aided detection (AI-CAD) can enhance the accuracy of chest radiograph (CR) interpretation in real-world clinical practice. We aimed to compare the accuracy of CR interpretation assisted by AI-CAD to that of conventional interpretation in patients who presented to the emergency department (ED) with acute respiratory symptoms using a pragmatic randomized controlled trial. Materials and Methods: Patients who underwent CRs for acute respiratory symptoms at the ED of a tertiary referral institution were randomly assigned to intervention group (with assistance from an AI-CAD for CR interpretation) or control group (without AI assistance). Using a commercial AI-CAD system (Lunit INSIGHT CXR, version 2.0.2.0; Lunit Inc.). Other clinical practices were consistent with standard procedures. Sensitivity and false-positive rates of CR interpretation by duty trainee radiologists for identifying acute thoracic diseases were the primary and secondary outcomes, respectively. The reference standards for acute thoracic disease were established based on a review of the patient's medical record at least 30 days after the ED visit. Results: We randomly assigned 3576 participants to either the intervention group (1761 participants; mean age ± standard deviation, 65 ± 17 years; 978 males; acute thoracic disease in 472 participants) or the control group (1815 participants; 64 ± 17 years; 988 males; acute thoracic disease in 491 participants). The sensitivity (67.2% [317/472] in the intervention group vs. 66.0% [324/491] in the control group; odds ratio, 1.02 [95% confidence interval, 0.70-1.49]; P = 0.917) and false-positive rate (19.3% [249/1289] vs. 18.5% [245/1324]; odds ratio, 1.00 [95% confidence interval, 0.79-1.26]; P = 0.985) of CR interpretation by duty radiologists were not associated with the use of AI-CAD. Conclusion: AI-CAD did not improve the sensitivity and false-positive rate of CR interpretation for diagnosing acute thoracic disease in patients with acute respiratory symptoms who presented to the ED.

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.

Demand Prediction of Furniture Component Order Using Deep Learning Techniques (딥러닝 기법을 활용한 가구 부자재 주문 수요예측)

  • Kim, Jae-Sung;Yang, Yeo-Jin;Oh, Min-Ji;Lee, Sung-Woong;Kwon, Sun-dong;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • Despite the recent economic contraction caused by the Corona 19 incident, interest in the residential environment is growing as more people live at home due to the increase in telecommuting, thereby increasing demand for remodeling. In addition, the government's real estate policy is also expected to have a visible impact on the sales of the interior and furniture industries as it shifts from regulatory policy to the expansion of housing supply. Accurate demand forecasting is a problem directly related to inventory management, and a good demand forecast can reduce logistics and inventory costs due to overproduction by eliminating the need to have unnecessary inventory. However, it is a difficult problem to predict accurate demand because external factors such as constantly changing economic trends, market trends, and social issues must be taken into account. In this study, LSTM model and 1D-CNN model were compared and analyzed by artificial intelligence-based time series analysis method to produce reliable results for manufacturers producing furniture components.

Soil Moisture Prediction Based on Hyperspectral Image using CNN(Convolution Neural Network) (합성곱신경망을 이용한 초분광영상기반 토양수분예측)

  • Jeon, Nam-Youl;Lee, Bong-Kyu
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2021
  • Since plant growth is greatly influenced by moisture, it is important to control the soil to have optimal moisture for the plant being grown. Recently, researches on automatically analyzing plant growth information including soil moisture using spectral images are being conducted. However, hyperspectral images are difficult to use due to huge amount of data appearing in spectral bands. In this paper, we propose a method to solve the complexity of hyperspectral images using a CNN. Since the proposed method automatically analyzes the entire band of the target hyperspectral using deep learning, there is no need to make an effort to find a specific band for analysis of each image. In order to show the effectiveness of the proposed system, we conduct an experiment to analyze moistures using hyperspectral images obtained from soil.

Metal Surface Defect Detection and Classification using EfficientNetV2 and YOLOv5 (EfficientNetV2 및 YOLOv5를 사용한 금속 표면 결함 검출 및 분류)

  • Alibek, Esanov;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.577-586
    • /
    • 2022
  • Detection and classification of steel surface defects are critical for product quality control in the steel industry. However, due to its low accuracy and slow speed, the traditional approach cannot be effectively used in a production line. The current, widely used algorithm (based on deep learning) has an accuracy problem, and there are still rooms for development. This paper proposes a method of steel surface defect detection combining EfficientNetV2 for image classification and YOLOv5 as an object detector. Shorter training time and high accuracy are advantages of this model. Firstly, the image input into EfficientNetV2 model classifies defect classes and predicts probability of having defects. If the probability of having a defect is less than 0.25, the algorithm directly recognizes that the sample has no defects. Otherwise, the samples are further input into YOLOv5 to accomplish the defect detection process on the metal surface. Experiments show that proposed model has good performance on the NEU dataset with an accuracy of 98.3%. Simultaneously, the average training speed is shorter than other models.

A new Mada-CenterNet based on Dual Block to improve accuracy of pest counting (해충 카운팅의 정확성 향상을 위한 Dual Block 기반의 새로운 Mada-CenterNet)

  • Hee-Jin Gwak;Cheol-Hee Lee;Chang-Hwan Son
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.342-351
    • /
    • 2024
  • Effective pest control in the agricultural field is essential for improving crop productivity. To do so, information on the type and timing of pests, as well as the amount of pests generated, is required. Mada-CenterNet, a prior study on pest counting, which is a method of identifying the amount of pest occurrence, has improved the accuracy of pest counting by utilizing transformable convolution and multiscale attention fusion and is reported to be the best in the field. In this study, a new transformer structure with a dual block was applied instead of multiscale attention, which is the transformer structure of Mada-CenterNet. More sophisticated feature maps were extracted through cross-attention of pixel path and semantic path. As a result of the experiment, the proposed model has improved the accuracy of pest counting. It is better than the existing Mada-CenterNet and effectively alleviates obstruction problems, damage to pests' bodies, and detection difficulties caused by various appearances. Unlike conventional pest counting methods, it can secure the advantage of reducing manpower and time costs, and it is expected that it can be used in other agricultural fields that require counting of objects.