• Title/Summary/Keyword: Deep dose

Search Result 183, Processing Time 0.03 seconds

Evaluation of Adult Lung CT Image for Ultra-Low-Dose CT Using Deep Learning Based Reconstruction

  • JO, Jun-Ho;MIN, Hyo-June;JEON, Kwang-Ho;KIM, Yu-Jin;LEE, Sang-Hyeok;KIM, Mi-Sung;JEON, Pil-Hyun;KIM, Daehong;BAEK, Cheol-Ha;LEE, Hakjae
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2021
  • Although CT has an advantage in describing the three-dimensional anatomical structure of the human body, it also has a disadvantage in that high doses are exposed to the patient. Recently, a deep learning-based image reconstruction method has been used to reduce patient dose. The purpose of this study is to analyze the dose reduction and image quality improvement of deep learning-based reconstruction (DLR) on the adult's chest CT examination. Adult lung phantom was used for image acquisition and analysis. Lung phantom was scanned at ultra-low-dose (ULD), low-dose (LD), and standard dose (SD) modes, and images were reconstructed using FBP (Filtered back projection), IR (Iterative reconstruction), DLR (Deep learning reconstruction) algorithms. Image quality variations with respect to varying imaging doses were evaluated using noise and SNR. At ULD mode, the noise of the DLR image was reduced by 62.42% compared to the FBP image, and at SD mode, the SNR of the DLR image was increased by 159.60% compared to the SNR of the FBP image. Based on this study, it is anticipated that the DLR will not only substantially reduce the chest CT dose but also drastic improvement of the image quality.

Effects of Fully Filling Deep Electron/Hole Traps in Optically Stimulated Luminescence Dosimeters in the Kilovoltage Energy Range

  • Chun, Minsoo;Jin, Hyeongmin;Lee, Sung Young;Kwon, Ohyun;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.134-142
    • /
    • 2022
  • Background: This study investigated the characteristics of optically stimulated luminescence dosimeters (OSLDs) with fully filled deep electron/hole traps in the kV energy ranges. Materials and Methods: The experimental group consisted of InLight nanoDots, whose deep electron/hole traps were fully filled with 5 kGy pre-irradiation (OSLDexp), whereas the non-pre-irradiated OSLDs were arranged as a control group (OSLDcont). Absorbed doses for 75, 80, 85, 90, 95, 100, and 105 kVp with 200 mA and 40 ms were measured and defined as the unit doses for each energy value. A bleaching device equipped with a 520-nm long-pass filter was used, and the strong beam mode was used to read out signal counts. The characteristics were investigated in terms of fading, dose sensitivities according to the accumulated doses, and dose linearity. Results and Discussion: In OSLDexp, the average normalized counts (sensitivities) were 12.7%, 14.0%, 15.0%, 10.2%, 18.0%, 17.9%, and 17.3% higher compared with those in OSLDcont for 75, 80, 90, 95, 100, and 105 kVp, respectively. The dose accumulation and bleaching time did not significantly alter the sensitivity, regardless of the filling of deep traps for all radiation qualities. Both OSLDexp and OSLDcont exhibited good linearity, by showing coefficients determination (R2) > 0.99. The OSL sensitivities can be increased by filling of deep electron/hole traps in the energy ranges between 75 and 105 kVp, and they exhibited no significant variations according to the bleaching time.

Evaluation of Lung Dose Using Linac Photon Beam in Geant 4 Simulation (Geant4 Simulation에서 Linac 광자선을 이용한 폐 선량평가)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.443-450
    • /
    • 2018
  • The Geant 4 simulated the linear accelerator (VARIAN CLINAC) based on the previously implemented BEAMnrC data, using the head structure of the linear accelerator. In the 10 MV photon flux, Geant4 was compared with the measured value of the percentage of the deep dose and the lateral dose of the water phantom. In order to apply the dose calculation to the body part, the actual patient's lung area was scanned at 5 mm intervals. Geant4 dose distributions were obtained by irradiating 10 MV photons at the irradiation field ($5{\times}5cm^2$) and SAD 100 cm of the water phantom. This result is difficult to measure the dose absorbed in the actual lung of the patient so the doses by the treatment planning system were compared. The deep dose curve measured by water phantom and the deep dose curve calculated by Geant4 were well within ${\pm}3%$ of most depths except the build-up area. However, at the 5 cm and 20 cm sites, 2.95% and 2.87% were somewhat higher in the calculation of the dose using Geant4. These two points were confirmed by the geometry file of Genat4, and it was found that the dose was increased because thoracic spine and sternum were located. In cone beam CT, the dose distribution error of the lungs was similar within 3%. Therefore, if the contour map of the dose can be directly expressed in the DICOM file when calculating the dose using Geant4, the clinical application of Geant4 will be used variously.

Deep X-ray Mask with Integrated Micro-Actuator for 3D Microfabrication via LIGA Process (3차원 LIGA 미세구조물 제작을 위한 마이크로 액추에이터 내장형 X-선 마스크)

  • Lee, Kwang-Cheol;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2187-2193
    • /
    • 2002
  • We present a novel method for 3D microfabrication with LIGA process that utilizes a deep X-ray mask in which a micro-actuator is integrated. The integrated micro-actuator oscillates the X-ray absorber, which is formed on the shuttle mass of the micro-actuator, during X-ray exposures to modify the absorbed dose profile in X-ray resist, typically PMMA. 3D PMMA microstructures according to the modulated dose contour are revealed after GG development. An X-ray mask with integrated comb drive actuator is fabricated using deep reactive ion etching, absorber electroplating, and bulk micromachining with silicon-on-insulator (SOI) wafer. 1mm $\times$ 1 mm, 20 $\mu$m thick silicon shuttle mass as a mask blank is supported by four 1 mm long suspension beams and is driven by the comb electrodes. A 10 $\mu$m thick, 50 $\mu$m line and spaced gold absorber pattern is electroplated on the shuttle mass before the release step. The fundamental frequency and amplitude are around 3.6 kHz and 20 $\mu$m, respectively, for a do bias of 100 V and an ac bias of 20 $V_{p-p}$ (peak-peak). Fabricated PMMA microstructure shows 15.4 $\mu$m deep, S-shaped cross section in the case of 1.6 kJ $cm^{-3}$ surface dose and GG development at 35$^{\circ}C$ for 40 minutes.

The impact of continuous positive airway pressure on radiation dose to heart and lung during left-sided postmastectomy radiotherapy when deep inspiration breath hold technique is not applicable: a case report

  • Kil, Whoon Jong;Pham, Tabitha;Hossain, Sabbir;Casaigne, Juan;Jones, Kellie;Khalil, Mohammad
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.79-84
    • /
    • 2018
  • Deep inspiration breathing hold (DIBH) compared to free-breathing (FB) during radiotherapy (RT) has significantly decreased radiation dose to heart and has been one of the techniques adopted for patients with breast cancer. However, patients who are unable to make suitable deep inspiration breath may not be eligible for DIBH, yet still need to spare the heart and lung during breast cancer RT (left-sided RT in particular). Continuous positive airway pressure (CPAP) is a positive airway pressure ventilator, which keeps the airways continuously open and subsequently inflates the thorax resembling thoracic changes from DIBH. In this report, authors applied CPAP instead of FB during left-sided breast cancer RT including internal mammary node in a patient who was unable to tolerate DIBH, and substantially decreased radiation dose the heart and lung with CPAP compared to FB.

Effects of the addition of low-dose ketamine to propofol anesthesia in the dental procedure for intellectually disabled patients

  • Hirayama, Akira;Fukuda, Ken-ichi;Koukita, Yoshihiko;Ichinohe, Tatsuya
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.19 no.3
    • /
    • pp.151-158
    • /
    • 2019
  • Background: This study aimed to examine whether the combination of low-dose ketamine and propofol in deep sedation is clinically useful in controlling the behavior in intellectually disabled patients who are typically extremely noncooperative during dental procedures. Methods: A total of 107 extremely noncooperative intellectually disabled adult patients were analyzed. In all patients, deep sedation was performed using either propofol alone (group P) or using a combination of propofol and 0.2 mg/kg or 0.4 mg/kg ketamine (groups PK0.2 and PK0.4, respectively). The procedures were performed in the order of insertion of nasal cannula into the nostril, attachment of mouth gag, and mouth cleaning and scaling. The frequency of patient movement during the procedures, mean arterial pressure, heart rate, peripheral oxygen saturation, recovery time, discharge time, and postoperative nausea and vomiting were examined. Results: The three groups were significantly different only in the frequency of patient movement upon stimulation during single intravenous injection of propofol and scaling. Conclusion: For propofol deep sedation, in contrast to intravenous injection of propofol alone, prior intravenous injection of low-dose ketamine (0.4 mg/kg) is clinically useful because it neither affects recovery, nor causes side effects and can suppress patient movement and vascular pain during procedures.

Single- and repeated-dose oral toxicity tests of deep sea water mineral extracts in ICR mice

  • Hwang, Min Hee;Cho, Miju;Lee, Dong Gun;Go, Eun Byeol;Park, Young Sig;Chung, Namhyun
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.227-231
    • /
    • 2016
  • Deep sea water (DSW) is located 100 to 500 m below the sea surface. DSW is widely used in various fields, and is an important source of minerals that can be used to treat mineral deficiency. In the present study, the oral toxicity of DSW-mineral extracts was determined using single-dose and 14-day repeated dose oral toxicity tests in ICR mice. For the single-dose oral toxicity tests, mineral extracts of magnesium (Mg) and calcium (Ca) at doses of 0, 6, 270, 810, and 1,350 mg/kg, respectively, were orally administered to mice once at the beginning of the experiment, and the mice were observed for 14 days. For the 14-day repeated dose oral toxicity tests, Mg and Ca mineral extracts at doses of 0, 3, 135, 405, 675 mg/kg, respectively, were orally administered to mice daily, and the mice were observed for 14 days. Various tests were performed including visual observation; analysis of relative organ weight, food intake, and organ weight; biochemical analysis, and histopathology. The results indicated that mortality and changes in appearance were not observed among differentially administered groups of male and female ICR mice during the experimental period. Differences in body weight gain, food intake, organ weight, and histopathology parameters were not significant between the control and mineral-administered groups. Some results of the biochemical analyses were significantly different, but showed no specific tendencies. Overall, no evidence of toxicity was observed from the oral administration of DSW extracts of Ca and Mg in ICR mice.

Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction

  • June Park;Jaeseung Shin;In Kyung Min;Heejin Bae;Yeo-Eun Kim;Yong Eun Chung
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.402-412
    • /
    • 2022
  • Objective: To evaluate the image quality and lesion detectability of lower-dose CT (LDCT) of the abdomen and pelvis obtained using a deep learning image reconstruction (DLIR) algorithm compared with those of standard-dose CT (SDCT) images. Materials and Methods: This retrospective study included 123 patients (mean age ± standard deviation, 63 ± 11 years; male:female, 70:53) who underwent contrast-enhanced abdominopelvic LDCT between May and August 2020 and had prior SDCT obtained using the same CT scanner within a year. LDCT images were reconstructed with hybrid iterative reconstruction (h-IR) and DLIR at medium and high strengths (DLIR-M and DLIR-H), while SDCT images were reconstructed with h-IR. For quantitative image quality analysis, image noise, signal-to-noise ratio, and contrast-to-noise ratio were measured in the liver, muscle, and aorta. Among the three different LDCT reconstruction algorithms, the one showing the smallest difference in quantitative parameters from those of SDCT images was selected for qualitative image quality analysis and lesion detectability evaluation. For qualitative analysis, overall image quality, image noise, image sharpness, image texture, and lesion conspicuity were graded using a 5-point scale by two radiologists. Observer performance in focal liver lesion detection was evaluated by comparing the jackknife free-response receiver operating characteristic figures-of-merit (FOM). Results: LDCT (35.1% dose reduction compared with SDCT) images obtained using DLIR-M showed similar quantitative measures to those of SDCT with h-IR images. All qualitative parameters of LDCT with DLIR-M images but image texture were similar to or significantly better than those of SDCT with h-IR images. The lesion detectability on LDCT with DLIR-M images was not significantly different from that of SDCT with h-IR images (reader-averaged FOM, 0.887 vs. 0.874, respectively; p = 0.581). Conclusion: Overall image quality and detectability of focal liver lesions is preserved in contrast-enhanced abdominopelvic LDCT obtained with DLIR-M relative to those in SDCT with h-IR.

A Study on the Radiation Exposure Dose of Clinical Trainees in the Department of Radiology: A Case Study at C University Hospital (방사선(학)과 임상실습생의 수시출입자 피폭선량에 대한 고찰: C 대학병원 사례 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.249-255
    • /
    • 2023
  • In this study, radiation exposure doses were measured in the course of clinical practice of radiation workers, radiological technologists in the radiation-related worker group, and preliminary-radiological technologists who were classified as frequent visitors. Radiological technologists who worked in the radiation area of C University Hospital in Incheon for a year from January 2021 and 121 students who completed clinical practice at the same medical institution from July 1 to August 31 were the subjects of the study. The nominal risk factor based on ICRP 103 was used to evaluate the probability of side effects due to the exposure dose to the lungs, which are organs at risk of damage due to radiation exposure dose. During the clinical practice period, radiology students, who were classified as frequent visitors, had a surface dose of 0.98 ± 0.14 mSv and a deep dose of 0.93 ± 0.14 mSv. In other words, 6.7 per 1,000,000 for shallow dose and 6.4 per 1,000,000 for deep dose were found to have side effects due to exposure to the lungs. This is a value in terms of exposure dose in one year. Considering that the radiation (science) education course is 3 or 4 years, systematic management and attention to prospective radiation workers who are going to clinical practice are required, and the stochastic effect of radiation In relation to this, it is considered that it will be used as basic data for radiation safety management.

A Study on Improvement Latch-up immunity and Triple Well formation in Deep Submicron CMOS devices (Deep Submicron급 CMOS 디바이스에서 Triple Well 형성과 래치업 면역 향상에 관한 연구)

  • 홍성표;전현성;강효영;윤석범;오환술
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.9
    • /
    • pp.54-61
    • /
    • 1998
  • A new Triple well structure is proposed for improved latch-up immunity at deep submicron CMOS device. Optimum latch-up immunity process condition is established and analyzed with varying ion implantation energy and amount of dose and also compared conventional twin well structure. Doping profile and structure are investigated using ATHENA which is process simulator, and then latch-up current is calculated using ATLAS which is device simulator. Two types of different process are affected by latch-up characteristics and shape of doping profiles. Finally, we obtained the best latch-up immunity with 2.5[mA/${\mu}{m}$] trigger current using 2.5 MeV implantation energy and 1$\times$10$^{14}$ [cm$^{-2}$ ] dose at p-well

  • PDF