• 제목/요약/키워드: Deep SORT Algorithm

검색결과 20건 처리시간 0.022초

Deep-Learning Based Real-time Fire Detection Using Object Tracking Algorithm

  • Park, Jonghyuk;Park, Dohyun;Hyun, Donghwan;Na, Youmin;Lee, Soo-Hong
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2022
  • 본 논문에서는 실시간 객체 탐지(Real-time Object Detection)가 가능한 YOLOv4 모델과 DeepSORT 알고리즘을 활용한 객체 추적(Object Tracking) 기술을 활용하여 CCTV 영상 이미지 기반의 화재 탐지 시스템을 제안한다. 화재 탐지 모델은 10800장의 학습용 데이터로부터 학습되었으며 1000장의 별도 테스트 셋을 통해 검증되었다. 이후 DeepSORT 알고리즘을 통해 탐지된 화재 영역을 추적하여 단일 이미지 내의 화재 탐지율과 영상 내에서의 화재 탐지 유지성능을 증가시켰다. 영상 내의 한 프레임 혹은 단일 이미지에 대한 화재 탐지 속도는 장당 0.1초 이내로 실시간 탐지가 가능함을 확인하였으며 본 논문의 AI 화재 탐지 시스템은 기존의 화재 사고 탐지 시스템 보다 안정적이고 빠른 성능을 지니고 있어 화재현장에 적용 시 화재를 조기 발견하여 빠른 대처 및 발화단계에서의 진화가 가능할 것으로 예상된다.

딥러닝 알고리즘을 활용한 출입자 통계와 마스크 착용 판별 인공지능 시스템 (Development of AI Systems for Counting Visitors and Check of Wearing Masks Using Deep Learning Algorithms)

  • 조원영;박승렬;김현수;윤태진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.285-286
    • /
    • 2020
  • 전 세계적으로 유행하는 COVID-19(코로나19)로 인해 사람들은 대면 접촉을 피하게 되었고, 전염성이 높은 이유로 마스크의 착용이 의무화되고 있고, 이를 검사하는 업무가 증가하고 있다. 그래서, 인공지능 기술을 통해 업무를 도와줄 수 있는 출입자 통계와 출입자 마스크 착용 검사를 할 수 있는 시스템이 필요하다. 이를 위해 본 논문에서는 딥러닝 알고리즘을 활용한 출입자 통계와 마스크 착용 판별 시스템을 제시한다. 또한, 실시간 영상인식에 많이 활용되고 있는 YOLO-v3와 YOLO-v4, YOLO-Tiny 알고리즘을 데스크탑 PC와 Nvidia사의 Jetson Nano에 적용하여 알고리즘별 성능 비교를 통해 적합한 방법을 찾고 적용하였다.

  • PDF

딥러닝 기반 다중 객체 추적 모델을 활용한 조식성 무척추동물 현존량 추정 기법 연구 (A Study on Biomass Estimation Technique of Invertebrate Grazers Using Multi-object Tracking Model Based on Deep Learning)

  • 박수호;김흥민;이희원;한정익;김탁영;임재영;장선웅
    • 대한원격탐사학회지
    • /
    • 제38권3호
    • /
    • pp.237-250
    • /
    • 2022
  • 본 연구에서는 딥러닝 기반 다중 객체 추적 모델을 활용하여 수중드론으로 촬영된 영상으로부터 특정 해역의 조식동물 현존량을 추정하는 방법을 제안한다. 수중드론 영상 내에 포함된 조식동물을 클래스 별로 탐지하기 위해 YOLOv5 (You Only Look Once version 5)를 활용하였으며, 개체수 집계를 위해 DeepSORT (Deep Simple Online and real-time tracking)를 활용하였다. GPU 가속기를 활용할 수 있는 워크스테이션 환경에서 두 모델의 성능 평가를 수행하였으며, YOLOv5 모델은 평균 0.9 이상의 모델의 정확도(mean Average Precision, mAP)를 보였으며, YOLOv5s 모델과 DeepSORT 알고리즘을 활용하였을 때, 4 k 해상도 기준 약 59 fps의 속도를 보이는 것을 확인하였다. 실해역 적용 결과 약 28%의 과대 추정하는 경향이 있었으나 객체 탐지 모델만 활용하여 현존량을 추정하는 것과 비교했을 때 오차 수준이 낮은 것을 확인하였다. 초점을 상실한 프레임이 연속해서 발생할 때와 수중드론의 조사 방향이 급격히 전환되는 환경에서의 정확도 향상을 위한 후속 연구가 필요하지만 해당 문제에 대한 개선이 이루어진다면, 추후 조식동물 구제 사업 및 모니터링 분야의 의사결정 지원자료 생산에 활용될 수 있을 것으로 판단된다.

드론 영상을 이용한 딥러닝 기반 회전 교차로 교통 분석 시스템 (Deep Learning-Based Roundabout Traffic Analysis System Using Unmanned Aerial Vehicle Videos)

  • 이장훈;황윤호;권희정;최지원;이종택
    • 대한임베디드공학회논문지
    • /
    • 제18권3호
    • /
    • pp.125-132
    • /
    • 2023
  • Roundabouts have strengths in traffic flow and safety but can present difficulties for inexperienced drivers. Demand to acquire and analyze drone images has increased to enhance a traffic environment allowing drivers to deal with roundabouts easily. In this paper, we propose a roundabout traffic analysis system that detects, tracks, and analyzes vehicles using a deep learning-based object detection model (YOLOv7) in drone images. About 3600 images for object detection model learning and testing were extracted and labeled from 1 hour of drone video. Through training diverse conditions and evaluating the performance of object detection models, we achieved an average precision (AP) of up to 97.2%. In addition, we utilized SORT (Simple Online and Realtime Tracking) and OC-SORT (Observation-Centric SORT), a real-time object tracking algorithm, which resulted in an average MOTA (Multiple Object Tracking Accuracy) of up to 89.2%. By implementing a method for measuring roundabout entry speed, we achieved an accuracy of 94.5%.

심층 신경망 병렬 학습 방법 연구 동향 (A survey on parallel training algorithms for deep neural networks)

  • 육동석;이효원;유인철
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.505-514
    • /
    • 2020
  • 심층 신경망(Deep Neural Network, DNN) 모델을 대량의 학습 데이터로 학습시키기 위해서는 많은 시간이 소요되기 때문에 병렬 학습 방법이 필요하다. DNN의 학습에는 일반적으로 Stochastic Gradient Descent(SGD) 방법이 사용되는데, SGD는 근본적으로 순차적인 처리가 필요하므로 병렬화하기 위해서는 다양한 근사(approximation) 방법을 적용하게 된다. 본 논문에서는 기존의 DNN 병렬 학습 알고리즘들을 소개하고 연산량, 통신량, 근사 방법 등을 분석한다.

심층학습 기반의 자동 객체 추적 및 핸디 모션 제어 드론 시스템 구현 및 검증 (Implementation and Verification of Deep Learning-based Automatic Object Tracking and Handy Motion Control Drone System)

  • 김영수;이준범;이찬영;전혜리;김승필
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.163-169
    • /
    • 2021
  • In this paper, we implemented a deep learning-based automatic object tracking and handy motion control drone system and analyzed the performance of the proposed system. The drone system automatically detects and tracks targets by analyzing images obtained from the drone's camera using deep learning algorithms, consisting of the YOLO, the MobileNet, and the deepSORT. Such deep learning-based detection and tracking algorithms have both higher target detection accuracy and processing speed than the conventional color-based algorithm, the CAMShift. In addition, in order to facilitate the drone control by hand from the ground control station, we classified handy motions and generated flight control commands through motion recognition using the YOLO algorithm. It was confirmed that such a deep learning-based target tracking and drone handy motion control system stably track the target and can easily control the drone.

Depth tracking of occluded ships based on SIFT feature matching

  • Yadong Liu;Yuesheng Liu;Ziyang Zhong;Yang Chen;Jinfeng Xia;Yunjie Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1066-1079
    • /
    • 2023
  • Multi-target tracking based on the detector is a very hot and important research topic in target tracking. It mainly includes two closely related processes, namely target detection and target tracking. Where target detection is responsible for detecting the exact position of the target, while target tracking monitors the temporal and spatial changes of the target. With the improvement of the detector, the tracking performance has reached a new level. The problem that always exists in the research of target tracking is the problem that occurs again after the target is occluded during tracking. Based on this question, this paper proposes a DeepSORT model based on SIFT features to improve ship tracking. Unlike previous feature extraction networks, SIFT algorithm does not require the characteristics of pre-training learning objectives and can be used in ship tracking quickly. At the same time, we improve and test the matching method of our model to find a balance between tracking accuracy and tracking speed. Experiments show that the model can get more ideal results.

Multi-Cattle tracking with appearance and motion models in closed barns using deep learning

  • Han, Shujie;Fuentes, Alvaro;Yoon, Sook;Park, Jongbin;Park, Dong Sun
    • 스마트미디어저널
    • /
    • 제11권8호
    • /
    • pp.84-92
    • /
    • 2022
  • Precision livestock monitoring promises greater management efficiency for farmers and higher welfare standards for animals. Recent studies on video-based animal activity recognition and tracking have shown promising solutions for understanding animal behavior. To achieve that, surveillance cameras are installed diagonally above the barn in a typical cattle farm setup to monitor animals constantly. Under these circumstances, tracking individuals requires addressing challenges such as occlusion and visual appearance, which are the main reasons for track breakage and increased misidentification of animals. This paper presents a framework for multi-cattle tracking in closed barns with appearance and motion models. To overcome the above challenges, we modify the DeepSORT algorithm to achieve higher tracking accuracy by three contributions. First, we reduce the weight of appearance information. Second, we use an Ensemble Kalman Filter to predict the random motion information of cattle. Third, we propose a supplementary matching algorithm that compares the absolute cattle position in the barn to reassign lost tracks. The main idea of the matching algorithm assumes that the number of cattle is fixed in the barn, so the edge of the barn is where new trajectories are most likely to emerge. Experimental results are performed on our dataset collected on two cattle farms. Our algorithm achieves 70.37%, 77.39%, and 81.74% performance on HOTA, AssA, and IDF1, representing an improvement of 1.53%, 4.17%, and 0.96%, respectively, compared to the original method.

딥러닝 알고리즘 기반 교통법규 위반 공익신고 영상 분석 시스템 (Analysis System for Public Interest Report Video of Traffic Law Violation based on Deep Learning Algorithms)

  • 최민성;문미경
    • 한국전자통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.63-70
    • /
    • 2023
  • 고화질 블랙박스의 확산과 '스마트 국민제보', '안전신문고' 등 모바일 애플리케이션의 도입에 따른 영향으로 교통법규 위반 공익신고가 급증하였으며, 이로 인해 이를 처리할 담당 경찰 인력은 부족한 상황이 되었다. 본 논문에서는 교통법규 위반 공익신고 영상 중, 가장 많은 비중을 차지하는 차선위반에 대해 딥러닝 알고리즘을 활용하여 자동 검출할 수 있는 시스템의 개발내용에 관해 기술한다. 본 연구에서는 YOLO 모델과 Lanenet 모델을 사용하여 차량과 실선 객체를 인식하고 deep sort 알고리즘을 사용하여 객체를 개별로 추적하는 방법, 그리고 차량 객체의 바운딩 박스와 실선 객체의 범위가 겹치는 부분을 인식하여 진로변경 위반을 검출하는 방법을 제안한다. 본 시스템을 통해 신고된 영상에 대해 교통법규 위반 여부를 자동 분석해줌으로써 담당 경찰 인력 부족난을 해소할 수 있을 것으로 기대한다.

Lightweight high-precision pedestrian tracking algorithm in complex occlusion scenarios

  • Qiang Gao;Zhicheng He;Xu Jia;Yinghong Xie;Xiaowei Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.840-860
    • /
    • 2023
  • Aiming at the serious occlusion and slow tracking speed in pedestrian target tracking and recognition in complex scenes, a target tracking method based on improved YOLO v5 combined with Deep SORT is proposed. By merging the attention mechanism ECA-Net with the Neck part of the YOLO v5 network, using the CIoU loss function and the method of CIoU non-maximum value suppression, connecting the Deep SORT model using Shuffle Net V2 as the appearance feature extraction network to achieve lightweight and fast speed tracking and the purpose of improving tracking under occlusion. A large number of experiments show that the improved YOLO v5 increases the average precision by 1.3% compared with other algorithms. The improved tracking model, MOTA reaches 54.3% on the MOT17 pedestrian tracking data, and the tracking accuracy is 3.7% higher than the related algorithms and The model presented in this paper improves the FPS by nearly 5 on the fps indicator.