• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.032 seconds

Cell Images Classification using Deep Convolutional Autoencoder of Unsupervised Learning (비지도학습의 딥 컨벌루셔널 자동 인코더를 이용한 셀 이미지 분류)

  • Vununu, Caleb;Park, Jin-Hyeok;Kwon, Oh-Jun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.942-943
    • /
    • 2021
  • The present work proposes a classification system for the HEp-2 cell images using an unsupervised deep feature learning method. Unlike most of the state-of-the-art methods in the literature that utilize deep learning in a strictly supervised way, we propose here the use of the deep convolutional autoencoder (DCAE) as the principal feature extractor for classifying the different types of the HEp-2 cell images. The network takes the original cell images as the inputs and learns to reconstruct them in order to capture the features related to the global shape of the cells. A final feature vector is constructed by using the latent representations extracted from the DCAE, giving a highly discriminative feature representation. The created features will be fed to a nonlinear classifier whose output will represent the final type of the cell image. We have tested the discriminability of the proposed features on one of the most popular HEp-2 cell classification datasets, the SNPHEp-2 dataset and the results show that the proposed features manage to capture the distinctive characteristics of the different cell types while performing at least as well as the actual deep learning based state-of-the-art methods.

Semiconductor Process Inspection Using Mask R-CNN (Mask R-CNN을 활용한 반도체 공정 검사)

  • Han, Jung Hee;Hong, Sung Soo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.12-18
    • /
    • 2020
  • In semiconductor manufacturing, defect detection is critical to maintain high yield. Currently, computer vision systems used in semiconductor photo lithography still have adopt to digital image processing algorithm, which often occur inspection faults due to sensitivity to external environment. Thus, we intend to handle this problem by means of using Mask R-CNN instead of digital image processing algorithm. Additionally, Mask R-CNN can be trained with image dataset pre-processed by means of the specific designed digital image filter to extract the enhanced feature map of Convolutional Neural Network (CNN). Our approach converged advantage of digital image processing and instance segmentation with deep learning yields more efficient semiconductor photo lithography inspection system than conventional system.

Computer vision based unmanned bus operating system (컴퓨터 비전 기반 무인 버스 운행시스템)

  • Lee, Yong-Han;Kim, Beom-Young;Lee, Sin-Hyo;Lee, Ji-Hun
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.716-719
    • /
    • 2017
  • This system is designed for autonomous buses. It controls buses by lane and object recognition using Deep Learning based computer vision technology. Through this system, we can expect to reduce traffic costs and increase stability.

Integrated System of Mobile Manipulator with Speech Recognition and Deep Learning-based Object Detection (음성인식과 딥러닝 기반 객체 인식 기술이 접목된 모바일 매니퓰레이터 통합 시스템)

  • Jang, Dongyeol;Yoo, Seungryeol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.270-275
    • /
    • 2021
  • Most of the initial forms of cooperative robots were intended to repeat simple tasks in a given space. So, they showed no significant difference from industrial robots. However, research for improving worker's productivity and supplementing human's limited working hours is expanding. Also, there have been active attempts to use it as a service robot by applying AI technology. In line with these social changes, we produced a mobile manipulator that can improve the worker's efficiency and completely replace one person. First, we combined cooperative robot with mobile robot. Second, we applied speech recognition technology and deep learning based object detection. Finally, we integrated all the systems by ROS (robot operating system). This system can communicate with workers by voice and drive autonomously and perform the Pick & Place task.

Development of Retina Healthcare Service System Using Smart Phone

  • Park, Gi Hun;Han, Ju Hyuck;Kim, Yong Suk
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.227-237
    • /
    • 2019
  • In this paper, we have developed a Retina Healthcare Service System through which the patient himself/herself can manage his/her retina health. In the case of conventional portable ophthalmic cameras, patients cannot check their eye health on their own because most of them are used by doctor in environments where ophthalmography cannot be performed properly. This system consists of web, app and camera modules, and when a patient mounts a camera module for fundus photography on his / her smart phone and then photographs his / her fundus through the app, the image is transmitted to a server, and the transmitted image reads the fundus the patient's fundus image status in the fundus image reading model learned using deep learning. When the doctor expresses his/her opinions about the patient 's eye condition based on the reading result and the fundus photograph, the patient can check through the app and judge whether to receive ophthalmologic treatment.

Developing Sentimental Analysis System Based on Various Optimizer

  • Eom, Seong Hoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.100-106
    • /
    • 2021
  • Over the past few decades, natural language processing research has not made much. However, the widespread use of deep learning and neural networks attracted attention for the application of neural networks in natural language processing. Sentiment analysis is one of the challenges of natural language processing. Emotions are things that a person thinks and feels. Therefore, sentiment analysis should be able to analyze the person's attitude, opinions, and inclinations in text or actual text. In the case of emotion analysis, it is a priority to simply classify two emotions: positive and negative. In this paper we propose the deep learning based sentimental analysis system according to various optimizer that is SGD, ADAM and RMSProp. Through experimental result RMSprop optimizer shows the best performance compared to others on IMDB data set. Future work is to find more best hyper parameter for sentimental analysis system.

Masked Face Temperature Measurement System Using Deep Learning (딥러닝을 활용한 마스크 착용 얼굴 체온 측정 시스템)

  • Lee, Min Jeong;Kim, Yoo Mi;Lim, Yang Mi
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.208-214
    • /
    • 2021
  • Since face masks in public were mandated during COVID-19, more people have taken temperature checks, with their masks on. The study has developed a contactless thermal camera that accurately measures temperatures of people wearing different kinds of masks, detect people wearing masks wrong, and record the temperature data. The built-in system that identifies people wearing masks wrong is what masks our contactless thermal camera differentiated from other thermal cameras. Also our contactless thermal camera can keep track of the number of mask wearers in different regions and their temperatures. Thus, the analysis of such regional data can significantly contribute to stemming the spread of the virus.

Development of Extracting System for Meaning·Subject Related Social Topic using Deep Learning (딥러닝을 통한 의미·주제 연관성 기반의 소셜 토픽 추출 시스템 개발)

  • Cho, Eunsook;Min, Soyeon;Kim, Sehoon;Kim, Bonggil
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.35-45
    • /
    • 2018
  • Users are sharing many of contents such as text, image, video, and so on in SNS. There are various information as like as personal interesting, opinion, and relationship in social media contents. Therefore, many of recommendation systems or search systems are being developed through analysis of social media contents. In order to extract subject-related topics of social context being collected from social media channels in developing those system, it is necessary to develop ontologies for semantic analysis. However, it is difficult to develop formal ontology because social media contents have the characteristics of non-formal data. Therefore, we develop a social topic system based on semantic and subject correlation. First of all, an extracting system of social topic based on semantic relationship analyzes semantic correlation and then extracts topics expressing semantic information of corresponding social context. Because the possibility of developing formal ontology expressing fully semantic information of various areas is limited, we develop a self-extensible architecture of ontology for semantic correlation. And then, a classifier of social contents and feed back classifies equivalent subject's social contents and feedbacks for extracting social topics according semantic correlation. The result of analyzing social contents and feedbacks extracts subject keyword, and index by measuring the degree of association based on social topic's semantic correlation. Deep Learning is applied into the process of indexing for improving accuracy and performance of mapping analysis of subject's extracting and semantic correlation. We expect that proposed system provides customized contents for users as well as optimized searching results because of analyzing semantic and subject correlation.

A System for Determining the Growth Stage of Fruit Tree Using a Deep Learning-Based Object Detection Model (딥러닝 기반의 객체 탐지 모델을 활용한 과수 생육 단계 판별 시스템)

  • Bang, Ji-Hyeon;Park, Jun;Park, Sung-Wook;Kim, Jun-Yung;Jung, Se-Hoon;Sim, Chun-Bo
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.9-18
    • /
    • 2022
  • Recently, research and system using AI is rapidly increasing in various fields. Smart farm using artificial intelligence and information communication technology is also being studied in agriculture. In addition, data-based precision agriculture is being commercialized by convergence various advanced technology such as autonomous driving, satellites, and big data. In Korea, the number of commercialization cases of facility agriculture among smart agriculture is increasing. However, research and investment are being biased in the field of facility agriculture. The gap between research and investment in facility agriculture and open-air agriculture continues to increase. The fields of fruit trees and plant factories have low research and investment. There is a problem that the big data collection and utilization system is insufficient. In this paper, we are proposed the system for determining the fruit tree growth stage using a deep learning-based object detection model. The system was proposed as a hybrid app for use in agricultural sites. In addition, we are implemented an object detection function for the fruit tree growth stage determine.

Development and Operation of Remote Lone-Senior Monitoring System Based on Heterogeneous IoT Sensors and Deep Learning (이종 사물인터넷 센서와 딥러닝에 기반한 독거노인 원격 모니터링 시스템의 개발 및 운영 사례 연구)

  • Yoon, Young;Kim, Hyunmin;Lee, Siwoo;Pouri, Safa Siavash
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.387-398
    • /
    • 2022
  • This paper presents a system that remotely monitors lone seniors at home and promptly alarms caregivers to recommend appropriate medical care services upon detecting abnormal behavior and critical conditions such as collapsing, excessive coughing, degradation of sleep quality, fever, and unusual indoor moving lines. Our system offers contactless monitoring techniques based on heterogeneous IoT sensors and deep learning to minimize the disruption to lone senior's daily life. In addition to the design and implementation of the sensor data collection and analysis system, we share our experience in installation, deployment, configuration, maintenance of the system through the case study conducted on the actual lone seniors living in Seoul Metropolitan. Based on our research, we recommend further development directions to prepare for the nationwide expansion of our system.