• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.03 seconds

Automatic Parking Enforcement of Electric Kickboards Based on Deep Learning Technique (딥러닝 기반의 전동킥보드 자동 주차 단속)

  • Park, Jisu;So, Sun Sup;Eun, Seongbae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.326-328
    • /
    • 2021
  • The use of shared electric kickboards that can move quickly within a short distance at a relatively low price is increasing significantly. In this paper, we propose a system for recognizing incorrect parking of an abandoned shared kickboard by applying deep learning-based object recognition technology. In this paper, a model similar to CNN was created separately considering the characteristics of the experimental data, and it was shown that a recognition rate of 60% was obtained through the experiment.

  • PDF

Restoration of Ghost Imaging in Atmospheric Turbulence Based on Deep Learning

  • Chenzhe Jiang;Banglian Xu;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.655-664
    • /
    • 2023
  • Ghost imaging (GI) technology is developing rapidly, but there are inevitably some limitations such as the influence of atmospheric turbulence. In this paper, we study a ghost imaging system in atmospheric turbulence and use a gamma-gamma (GG) model to simulate the medium to strong range of turbulence distribution. With a compressed sensing (CS) algorithm and generative adversarial network (GAN), the image can be restored well. We analyze the performance of correlation imaging, the influence of atmospheric turbulence and the restoration algorithm's effects. The restored image's peak signal-to-noise ratio (PSNR) and structural similarity index map (SSIM) increased to 21.9 dB and 0.67 dB, respectively. This proves that deep learning (DL) methods can restore a distorted image well, and it has specific significance for computational imaging in noisy and fuzzy environments.

Analysis of Deep Learning-Based Lane Detection Models for Autonomous Driving (자율 주행을 위한 심층 학습 기반 차선 인식 모델 분석)

  • Hyunjong Lee;Euihyun Yoon;Jungmin Ha;Jaekoo Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.5
    • /
    • pp.225-231
    • /
    • 2023
  • With the recent surge in the autonomous driving market, the significance of lane detection technology has escalated. Lane detection plays a pivotal role in autonomous driving systems by identifying lanes to ensure safe vehicle operation. Traditional lane detection models rely on engineers manually extracting lane features from predefined environments. However, real-world road conditions present diverse challenges, hampering the engineers' ability to extract adaptable lane features, resulting in limited performance. Consequently, recent research has focused on developing deep learning based lane detection models to extract lane features directly from data. In this paper, we classify lane detection models into four categories: cluster-based, curve-based, information propagation-based, and anchor-based methods. We conduct an extensive analysis of the strengths and weaknesses of each approach, evaluate the model's performance on an embedded board, and assess their practicality and effectiveness. Based on our findings, we propose future research directions and potential enhancements.

A study on the auto encoder-based anomaly detection technique for pipeline inspection (관로 조사를 위한 오토 인코더 기반 이상 탐지기법에 관한 연구)

  • Gwantae Kim;Junewon Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.2
    • /
    • pp.83-93
    • /
    • 2024
  • In this study, we present a sewer pipe inspection technique through a combination of active sonar technology and deep learning algorithms. It is difficult to inspect pipes containing water using conventional CCTV inspection methods, and there are various limitations, so a new approach is needed. In this paper, we introduce a inspection method using active sonar, and apply an auto encoder deep learning model to process sonar data to distinguish between normal and abnormal pipelines. This model underwent training on sonar data from a controlled environment under the assumption of normal pipeline conditions and utilized anomaly detection techniques to identify deviations from established standards. This approach presents a new perspective in pipeline inspection, promising to reduce the time and resources required for sewer system management and to enhance the reliability of pipeline inspections.

Research Trends on Related to Artificial Intelligence for the Visually Impaired : Focused on Domestic and Foreign Research in 1993-2020 (시각장애인을 위한 인공지능 관련 연구 동향 : 1993-2020년 국내·외 연구를 중심으로)

  • Bae, Sun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.688-701
    • /
    • 2020
  • In this study, a total of 68 domestic and international papers were selected from 1993 to August 2020 in order to examine the research trends related to artificial intelligence for the visually impaired. The papers were compared and analyzed by the number of papers published by year, research method, research topic, keyword analysis status, research type, and implementation method. As a result of the study, the number of papers during the study period seemed to increase steadily. But in the case of domestic research, It can be seen that it has become active since 2016. As for research methods, development research accounted for 89.7% of both domestic and foreign research. Keywords was in Visually Impaired, Deep Learning, and Assistive Device order in domestic research. And it was in Visually Impaired, Deep learning, Artificial intelligence order in foreign research. There was a difference in the frequency of words. Research type were Design, development and implementation both in domestic and foreign. Implementation method were in System 13.2%, Solution 7.4%, App. 4.4% order in domestic research, and it was in System 32.4%, App. 13.2%, Device 7.4% order in foreign research. As for the applied technology of the implementation method, were in YOLO 2.7%, TTS 2.1%, Tensorflow 2.1% order in domestic research, and it was used in CNN 8.0%, TTS 5.3%, MS-COCO 4.3% order in foreign research. The purpose of this study was to compare and analyze the trends of artificial intelligence-related research targeting the visually impaired, to immediately know the current status of domestic and foreign research, and to present the direction of artificial intelligence research for the visually impaired in the future.

Analysis System for Public Interest Report Video of Traffic Law Violation based on Deep Learning Algorithms (딥러닝 알고리즘 기반 교통법규 위반 공익신고 영상 분석 시스템)

  • Min-Seong Choi;Mi-Kyeong Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • Due to the spread of high-definition black boxes and the introduction of mobile applications such as 'Smart Citizens Report' and 'Safety Report', the number of public interest reports for violations of Traffic Law has increased rapidly, resulting in shortage of police personnel to handle them. In this paper, we describe the development of a system that can automatically detect lane violations which account for the largest proportion of public interest reporting videos for violations of traffic laws, using deep learning algorithms. In this study, a method for recognizing a vehicle and a solid line object using a YOLO model and a Lanenet model, a method for tracking an object individually using a deep sort algorithm, and a method for detecting lane change violations by recognizing the overlapping range of a vehicle object's bounding box and a solid line object are described. Using this system, it is expected that the shortage of police personnel in charge will be resolved.

FPGA Implementation of an Artificial Intelligence Signal Recognition System

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2022
  • Cardiac disease is the most common cause of death worldwide. Therefore, detection and classification of electrocardiogram (ECG) signals are crucial to extend life expectancy. In this study, we aimed to implement an artificial intelligence signal recognition system in field programmable gate array (FPGA), which can recognize patterns of bio-signals such as ECG in edge devices that require batteries. Despite the increment in classification accuracy, deep learning models require exorbitant computational resources and power, which makes the mapping of deep neural networks slow and implementation on wearable devices challenging. To overcome these limitations, spiking neural networks (SNNs) have been applied. SNNs are biologically inspired, event-driven neural networks that compute and transfer information using discrete spikes, which require fewer operations and less complex hardware resources. Thus, they are more energy-efficient compared to other artificial neural networks algorithms.

Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system

  • Kim, Kyuseok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2341-2347
    • /
    • 2021
  • Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the image quality, the noise properties and visual quality metric evaluation parameters were calculated. The results demonstrate that our proposed method delivers a more valid SR improvement by using dense block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the image quality of the resulting SR image, and our proposed technique was shown to be effective for nuclear medicine imaging.

Real-Time CCTV Based Garbage Detection for Modern Societies using Deep Convolutional Neural Network with Person-Identification

  • Syed Muhammad Raza;Syed Ghazi Hassan;Syed Ali Hassan;Soo Young Shin
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.109-120
    • /
    • 2024
  • Trash or garbage is one of the most dangerous health and environmental problems that affect pollution. Pollution affects nature, human life, and wildlife. In this paper, we propose modern solutions for cleaning the environment of trash pollution by enforcing strict action against people who dump trash inappropriately on streets, outside the home, and in unnecessary places. Artificial Intelligence (AI), especially Deep Learning (DL), has been used to automate and solve issues in the world. We availed this as an excellent opportunity to develop a system that identifies trash using a deep convolutional neural network (CNN). This paper proposes a real-time garbage identification system based on a deep CNN architecture with eight distinct classes for the training dataset. After identifying the garbage, the CCTV camera captures a video of the individual placing the trash in the incorrect location and sends an alert notice to the relevant authority.

Deep Neural Network Technology for Analyzing PDA Colorimetric Transition Sensors in Pathogen Detection (병원균 검출용 PDA 색 전이 센서 분석을 위한 심층신경망 기술)

  • Junhyeon Jeon;Huisoo Jang;Mingyeong Shin;Tae-Joon Jeon;Sun Min Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.27-34
    • /
    • 2024
  • In this study, we propose a novel approach for rapid and accurate pathogen detection by integrating Polydiacetylene (PDA) hydrogel sensors with advanced deep learning algorithms and visualization techniques. PDA hydrogel sensors exhibit a color transition in the presence of pathogens, enabling straightforward and quick pathogen detection. We developed a reliable pathogen detection system that combines deep neural network algorithms with color quantification technology for image-based analysis. This image-based system retains the ease of pathogen detection offered by PDA sensors while deriving quantified color standards to overcome the limitations of human visual assessment, enhancing reliability. This advancement contributes to public health and the development and application of pathogen detection technology.