• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.025 seconds

Deep-learning Sliding Window Based Object Detection and Tracking for Generating Trigger Signal of the LPR System (LPR 시스템 트리거 신호 생성을 위한 딥러닝 슬라이딩 윈도우 방식의 객체 탐지 및 추적)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.85-94
    • /
    • 2021
  • The LPR system's trigger sensor makes problem occasionally due to the heave weight of vehicle or the obsolescence equipment. If we replace the hardware sensor to the deep-learning based software sensor in order to generate the trigger signal, LPR system maintenance would be a lot easier. In this paper we proposed the deep-learning sliding window based object detection and tracking algorithm for the LPR system's trigger signal generation. The gate passing vehicle's license plate recognition results are combined into the normal tracking algorithm to catch the position of the vehicle on the trigger line. The experimental results show that the deep learning sliding window based trigger signal generating performance was 100% for the gate passing vehicles including the 5.5% trigger signal position errors due to the minimum bounding box location errors in the vehicle detection process.

Deep Learning Machine Vision System with High Object Recognition Rate using Multiple-Exposure Image Sensing Method

  • Park, Min-Jun;Kim, Hyeon-June
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.76-81
    • /
    • 2021
  • In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.

Improving Dynamic Missile Defense Effectiveness Using Multi-Agent Deep Q-Network Model (멀티에이전트 기반 Deep Q-Network 모델을 이용한 동적 미사일 방어효과 개선)

  • Min Gook Kim;Dong Wook Hong;Bong Wan Choi;Ji Hoon Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.74-83
    • /
    • 2024
  • The threat of North Korea's long-range firepower is recognized as a typical asymmetric threat, and South Korea is prioritizing the development of a Korean-style missile defense system to defend against it. To address this, previous research modeled North Korean long-range artillery attacks as a Markov Decision Process (MDP) and used Approximate Dynamic Programming as an algorithm for missile defense, but due to its limitations, there is an intention to apply deep reinforcement learning techniques that incorporate deep learning. In this paper, we aim to develop a missile defense system algorithm by applying a modified DQN with multi-agent-based deep reinforcement learning techniques. Through this, we have researched to ensure an efficient missile defense system can be implemented considering the style of attacks in recent wars, such as how effectively it can respond to enemy missile attacks, and have proven that the results learned through deep reinforcement learning show superior outcomes.

Adaptive Recommendation System for Tourism by Personality Type Using Deep Learning

  • Jeong, Chi-Seo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • Adaptive recommendation systems have been developed with big data processing as a system that provides services tailored to users based on user information and usage patterns. Deep learning can be used in these adaptive recommendation systems to handle big data, providing more efficient user-friendly recommendation services. In this paper, we propose a system that uses deep learning to categorize and recommend tourism types to suit the user's personality. The system was divided into three layers according to its core role to increase efficiency and facilitate maintenance. Each layer consists of the Service Provisioning Layer that real users encounter, the Recommendation Service Layer, which provides recommended services based on user information entered, and the Adaptive Definition Layer, which learns the types of tourism suitable for personality types. The proposed system is highly scalable because it provides services using deep learning, and the adaptive recommendation system connects the user's personality type and tourism type to deliver the data to the user in a flexible manner.

Deep learning classifier for the number of layers in the subsurface structure

  • Kim, Ho-Chan;Kang, Min-Jae
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.51-58
    • /
    • 2021
  • In this paper, we propose a deep learning classifier for estimating the number of layers in the Earth's structure. When installing a grounding system, knowledge of the subsurface in the area is absolutely necessary. The subsurface structure can be modeled by the earth parameters. Knowing the exact number of layers can significantly reduce the amount of computation to estimate these parameters. The classifier consists of a feedforward neural network. Apparent resistivity curves were used to train the deep learning classifier. The apparent resistivity at 20 equally spaced log points in each curve are used as the features for the input of the deep learning classifier. Apparent resistivity curve data sets are collected either by theoretical calculations or by Wenner's measurement method. Deep learning classifiers are coded by Keras, an open source neural network library written in Python. This model has been shown to converge with close to 100% accuracy.

Deep Learning Structure Suitable for Embedded System for Flame Detection (불꽃 감지를 위한 임베디드 시스템에 적합한 딥러닝 구조)

  • Ra, Seung-Tak;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.112-119
    • /
    • 2019
  • In this paper, we propose a deep learning structure suitable for embedded system. The flame detection process of the proposed deep learning structure consists of four steps : flame area detection using flame color model, flame image classification using deep learning structure for flame color specialization, $N{\times}N$ cell separation in detected flame area, flame image classification using deep learning structure for flame shape specialization. First, only the color of the flame is extracted from the input image and then labeled to detect the flame area. Second, area of flame detected is the input of a deep learning structure specialized in flame color and is classified as flame image only if the probability of flame class at the output is greater than 75%. Third, divide the detected flame region of the images classified as flame images less than 75% in the preceding section into $N{\times}N$ units. Fourthly, small cells divided into $N{\times}N$ units are inserted into the input of a deep learning structure specialized to the shape of the flame and each cell is judged to be flame proof and classified as flame images if more than 50% of cells are classified as flame images. To verify the effectiveness of the proposed deep learning structure, we experimented with a flame database of ImageNet. Experimental results show that the proposed deep learning structure has an average resource occupancy rate of 29.86% and an 8 second fast flame detection time. The flame detection rate averaged 0.95% lower compared to the existing deep learning structure, but this was the result of light construction of the deep learning structure for application to embedded systems. Therefore, the deep learning structure for flame detection proposed in this paper has been proved suitable for the application of embedded system.

De-noising in Power Line Communication Using Noise Modeling Based on Deep Learning (딥 러닝 기반의 잡음 모델링을 이용한 전력선 통신에서의 잡음 제거)

  • Sun, Young-Ghyu;Hwang, Yu-Min;Sim, Issac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • This paper shows the initial results of a study applying deep learning technology in power line communication. In this paper, we propose a system that effectively removes noise by applying a deep learning technique to eliminate noise, which is a cause of reduced power line communication performance, by adding a deep learning model at the receive part. To train the deep learning model, it is necessary to store the data. Therefore, it is assumed that the existing data is stored, and the proposed system is simulated. we compare the theoretical result of the additive white Gaussian noise channel with the bit error rate and confirm that the proposed system model improves the communication performance by removing the noise.

A Deep Learning Approach for Intrusion Detection

  • Roua Dhahbi;Farah Jemili
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.89-96
    • /
    • 2023
  • Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.

Comparison of Prediction Accuracy Between Regression Analysis and Deep Learning, and Empirical Analysis of The Importance of Techniques for Optimizing Deep Learning Models (회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석)

  • Min-Ho Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.299-304
    • /
    • 2023
  • Among artificial intelligence techniques, deep learning is a model that has been used in many places and has proven its effectiveness. However, deep learning models are not used effectively in everywhere. In this paper, we will show the limitations of deep learning models through comparison of regression analysis and deep learning models, and present a guide for effective use of deep learning models. In addition, among various techniques used for optimization of deep learning models, data normalization and data shuffling techniques, which are widely used, are compared and evaluated based on actual data to provide guidelines for increasing the accuracy and value of deep learning models.

An Implementation of Embedded Linux System for Embossed Digit Recognition using CNN based Deep Learning (CNN 기반 딥러닝을 이용한 임베디드 리눅스 양각 문자 인식 시스템 구현)

  • Yu, Yeon-Seung;Kim, Cheong Ghil;Hong, Chung-Pyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.100-104
    • /
    • 2020
  • Over the past several years, deep learning has been widely used for feature extraction in image and video for various applications such as object classification and facial recognition. This paper introduces an implantation of embedded Linux system for embossed digits recognition using CNN based deep learning methods. For this purpose, we implemented a coin recognition system based on deep learning with the Keras open source library on Raspberry PI. The performance evaluation has been made with the success rate of coin classification using the images captured with ultra-wide angle camera on Raspberry PI. The simulation result shows 98% of the success rate on average.