• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.027 seconds

A Study on the User-Based Small Fishing Boat Collision Alarm Classification Model Using Semi-supervised Learning (준지도 학습을 활용한 사용자 기반 소형 어선 충돌 경보 분류모델에대한 연구)

  • Ho-June Seok;Seung Sim;Jeong-Hun Woo;Jun-Rae Cho;Jaeyong Jung;DeukJae Cho;Jong-Hwa Baek
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.358-366
    • /
    • 2023
  • This study aimed to provide a solution for improving ship collision alert of the 'accident vulnerable ship monitoring service' among the 'intelligent marine traffic information system' services of the Ministry of Oceans and Fisheries. The current ship collision alert uses a supervised learning (SL) model with survey labels based on large ship-oriented data and its operators. Consequently, the small ship data and the operator's opinion are not reflected in the current collision-supervised learning model, and the effect is insufficient because the alarm is provided from a longer distance than the small ship operator feels. In addition, the supervised learning (SL) method requires a large number of labeled data, and the labeling process requires a lot of resources and time. To overcome these limitations, in this paper, the classification model of collision alerts for small ships using unlabeled data with the semi-supervised learning (SSL) algorithms (Label Propagation and TabNet) was studied. Results of real-time experiments on small ship operators using the classification model of collision alerts showed that the satisfaction of operators increased.

Alzheimer's Disease Classification with Automated MRI Biomarker Detection Using Faster R-CNN for Alzheimer's Disease Diagnosis (치매 진단을 위한 Faster R-CNN 활용 MRI 바이오마커 자동 검출 연동 분류 기술 개발)

  • Son, Joo Hyung;Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1168-1177
    • /
    • 2019
  • In order to diagnose and prevent Alzheimer's Disease (AD), it is becoming increasingly important to develop a CAD(Computer-aided Diagnosis) system for AD diagnosis, which provides effective treatment for patients by analyzing 3D MRI images. It is essential to apply powerful deep learning algorithms in order to automatically classify stages of Alzheimer's Disease and to develop a Alzheimer's Disease support diagnosis system that has the function of detecting hippocampus and CSF(Cerebrospinal fluid) which are important biomarkers in diagnosis of Alzheimer's Disease. In this paper, for AD diagnosis, we classify a given MRI data into three categories of AD, mild cognitive impairment, and normal control according by applying 3D brain MRI image to the Faster R-CNN model and detect hippocampus and CSF in MRI image. To do this, we use the 2D MRI slice images extracted from the 3D MRI data of the Faster R-CNN, and perform the widely used majority voting algorithm on the resulting bounding box labels for classification. To verify the proposed method, we used the public ADNI data set, which is the standard brain MRI database. Experimental results show that the proposed method achieves impressive classification performance compared with other state-of-the-art methods.

Analyzing Effective of Activation Functions on Recurrent Neural Networks for Intrusion Detection

  • Le, Thi-Thu-Huong;Kim, Jihyun;Kim, Howon
    • Journal of Multimedia Information System
    • /
    • v.3 no.3
    • /
    • pp.91-96
    • /
    • 2016
  • Network security is an interesting area in Information Technology. It has an important role for the manager monitor and control operating of the network. There are many techniques to help us prevent anomaly or malicious activities such as firewall configuration etc. Intrusion Detection System (IDS) is one of effective method help us reduce the cost to build. The more attacks occur, the more necessary intrusion detection needs. IDS is a software or hardware systems, even though is a combination of them. Its major role is detecting malicious activity. In recently, there are many researchers proposed techniques or algorithms to build a tool in this field. In this paper, we improve the performance of IDS. We explore and analyze the impact of activation functions applying to recurrent neural network model. We use to KDD cup dataset for our experiment. By our experimental results, we verify that our new tool of IDS is really significant in this field.

A Strategy Study on Sensitive Information Filtering for Personal Information Protect in Big Data Analyze

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.101-108
    • /
    • 2017
  • The study proposed a system that filters the data that is entered when analyzing big data such as SNS and BLOG. Personal information includes impersonal personal information, but there is also personal information that distinguishes it from personal information, such as religious institution, personal feelings, thoughts, or beliefs. Define these personally identifiable information as sensitive information. In order to prevent this, Article 23 of the Privacy Act has clauses on the collection and utilization of the information. The proposed system structure is divided into two stages, including Big Data Processing Processes and Sensitive Information Filtering Processes, and Big Data processing is analyzed and applied in Big Data collection in four stages. Big Data Processing Processes include data collection and storage, vocabulary analysis and parsing and semantics. Sensitive Information Filtering Processes includes sensitive information questionnaires, establishing sensitive information DB, qualifying information, filtering sensitive information, and reliability analysis. As a result, the number of Big Data performed in the experiment was carried out at 84.13%, until 7553 of 8978 was produced to create the Ontology Generation. There is considerable significan ce to the point that Performing a sensitive information cut phase was carried out by 98%.

Detection and Diagnosis of Power Distribution Supply Facilities Using Thermal Images (열화상 이미지를 이용한 배전 설비 검출 및 진단)

  • Kim, Joo-Sik;Choi, Kyu-Nam;Lee, Hyung-Geun;Kang, Sung-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Maintenance of power distribution facilities is a significant subject in the power supplies. Fault caused by deterioration in power distribution facilities may damage the entire power distribution system. However, current methods of diagnosing power distribution facilities have been manually diagnosed by the human inspector, resulting in continuous pole accidents. In order to improve the existing diagnostic methods, a thermal image analysis model is proposed in this work. Using a thermal image technique in diagnosis field is emerging in the various engineering field due to its non-contact, safe, and highly reliable energy detection technology. Deep learning object detection algorithms are trained with thermal images of a power distribution facility in order to automatically analyze its irregular energy status, hereby efficiently preventing fault of the system. The detected object is diagnosed through a thermal intensity area analysis. The proposed model in this work resulted 82% of accuracy of detecting an actual distribution system by analyzing more than 16,000 images of its thermal images.

Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using Deep Feature applicable to Large-scale Datasets

  • Byun, Sung-Woo;Lee, Seok-Pil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4300-4314
    • /
    • 2019
  • With the development of video-related applications, media content has increased dramatically through applications. There is a substantial amount of near-duplicate videos (NDVs) among Internet videos, thus NDVR is important for eliminating near-duplicates from web video searches. This paper proposes a novel NDVR system that supports large-scale retrieval and contributes to the efficient and accurate retrieval performance. For this, we extracted keyframes from each video at regular intervals and then extracted both commonly used features (LBP and HSV) and new image features from each keyframe. A recent study introduced a new image feature that can provide more robust information than existing features even if there are geometric changes to and complex editing of images. We convert a vector set that consists of the extracted features to binary code through a set of hash functions so that the similarity comparison can be more efficient as similar videos are more likely to map into the same buckets. Lastly, we calculate similarity to search for NDVs; we examine the effectiveness of the NDVR system and compare this against previous NDVR systems using the public video collections CC_WEB_VIDEO. The proposed NDVR system's performance is very promising compared to previous NDVR systems.

Implementation of Cough Detection System Using IoT Sensor in Respirator

  • Shin, Woochang
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.132-138
    • /
    • 2020
  • Worldwide, the number of corona virus disease 2019 (COVID-19) confirmed cases is rapidly increasing. Although vaccines and treatments for COVID-19 are being developed, the disease is unlikely to disappear completely. By attaching a smart sensor to the respirator worn by medical staff, Internet of Things (IoT) technology and artificial intelligence (AI) technology can be used to automatically detect the medical staff's infection symptoms. In the case of medical staff showing symptoms of the disease, appropriate medical treatment can be provided to protect the staff from the greater risk. In this study, we design and develop a system that detects cough, a typical symptom of respiratory infectious diseases, by applying IoT technology and artificial technology to respiratory protection. Because the cough sound is distorted within the respirator, it is difficult to guarantee accuracy in the AI model learned from the general cough sound. Therefore, coughing and non-coughing sounds were recorded using a sensor attached to a respirator, and AI models were trained and performance evaluated with this data. Mel-spectrogram conversion method was used to efficiently classify sound data, and the developed cough recognition system had a sensitivity of 95.12% and a specificity of 100%, and an overall accuracy of 97.94%.

Ball Grid Array Solder Void Inspection Using Mask R-CNN

  • Kim, Seung Cheol;Jeon, Ho Jeong;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.126-130
    • /
    • 2021
  • The ball grid array is one of the packaging methods that used in high density printed circuit board. Solder void defects caused by voids in the solder ball during the BGA process do not directly affect the reliability of the product, but it may accelerate the aging of the device on the PCB layer or interface surface depending on its size or location. Void inspection is important because it is related in yields with products. The most important process in the optical inspection of solder void is the segmentation process of solder and void. However, there are several segmentation algorithms for the vision inspection, it is impossible to inspect all of images ideally. When X-Ray images with poor contrast and high level of noise become difficult to perform image processing for vision inspection in terms of software programming. This paper suggests the solution to deal with the suggested problem by means of using Mask R-CNN instead of digital image processing algorithm. Mask R-CNN model can be trained with images pre-processed to increase contrast or alleviate noises. With this process, it provides more efficient system about complex object segmentation than conventional system.

A Research to realize a smart logistics warehouse system using 5G-based Logistics Automation Robot (5G 기반 물류 자동화 로봇을 활용한 스마트 물류 창고 시스템 구현을 위한 연구)

  • Park, Tae-uk;Yoon, Mahn-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.532-534
    • /
    • 2022
  • At a time when the 5G era is advancing beyond commercialization, places that used to handle simple logistics warehouse tasks are transforming into smart logistics warehouses by combining IT convergence technology and platforms. Smart logistics warehouses can accurately predict demand and inventory of products with AI, deep learning, and robot technologies based on 5G, and provide information on warehousing and warehousing status in real time. As the e-commerce market grows, the smart logistics sector is also growing rapidly. This paper implements a smart logistics warehouse system and studies and proposes a method of establishing a fast and accurate logistics system by utilizing 5G-based Logistics Automation Robot.

  • PDF

YOLO Based Automatic Sorting System for Plastic Recycling (플라스틱 재활용을 위한 YOLO기반의 자동 분류시스템)

  • Kim, Yong jun;Cho, Taeuk;Park, Hyung-kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.382-384
    • /
    • 2021
  • In this study, we implement a system that automatically classifies types of plastics using YOLO (You Only Look Once), a real-time object recognition algorithm. The system consists of Nvidia jetson nano, a small computer for deep learning and computer vision, with model trained to recognize plastic separation emission marks using YOLO. Using a webcam, recycling marks of plastic waste were recognized as PET, HDPE, and PP, and motors were adjusted to be classified according to the type. By implementing this automatic classifier, it is convenient in that it can reduce the labor of separating and discharging plastic separation marks by humans and increase the efficiency of recycling through accurate recycling.

  • PDF