• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.037 seconds

A mobile system development which has function of movie success prediction and recommendation based on deep learning (딥러닝 기반 영화 흥행 예측 및 영화 추천 모바일 시스템 개발)

  • Kim, Kyeong-Seok;Jang, Jae-Jun;Kang, Hyun-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.443-448
    • /
    • 2019
  • 본 논문은 공공 데이터 Open API와 TMDB(The Movie Database) API를 이용하여 사용자의 선호 영화를 Google에서 제공해주는 Tensoflow로 인공신경망 딥러닝 학습하여 사용자가 선호하는 영화를 맞춤 추천하는 애플리케이션의 설계 및 구현에 대하여 서술한다. 본 애플리케이션은 사용자가 쉽게 영화를 추천받을 수 있도록 만들어진 애플리케이션으로 기존의 필터링 방식으로 추천하는 방식의 애플리케이션들과 달리 사용자의 취향을 딥러닝 학습을 통해 최적의 영화 Contents를 추천함과 아울러 기존 영화의 특성을 학습하여 흥행할 신규 영화를 예측하는 기능 또한 제공한다. 본 애플리케이션에 사용된 신규 영화 흥행 예측 모델은 약 85%의 정확도를 보이며 사용자 맞춤추천의 경우 기존 장르 추천이나 협업 필터링 추천보다 딥러닝을 통한 장르, 감독, 배우 등의 보다 세밀한 학습 추천이 가능하다.

  • PDF

A Development of a Worker Safety Management System based on Deep Learning (딥러닝 기반 건설 현장 작업자 안전관리 시스템 개발)

  • Ihm, Sun-Young;Choi, Jae-Young;Park, Young-Ho
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.884-886
    • /
    • 2021
  • 각종 건설 현장에서 안전모 미착용은 주된 위험 요인 중 하나이다. 현장에서 관리자가 직접 작업자들의 안전모 착용 여부를 감독할 수 있지만 관리자가 항상 관리가 가능한 장소에 있어야 하는 한계가 있다. 본 연구에서는 안전모 착용 여부를 딥러닝 기반으로 인식하여 건설 현장에서의 안전 관리를 할 수 있도록 하는 시스템을 제안한다. 이를 위해 대표적인 객체 인식 알고리즘인 YOLO를 사용하여 현장에서의 안전모 착용 여부를 인식한다. 다음으로는 인식된 결과를 바탕으로 위험 상황을 판단하는 알고리즘을 제안한다. 제안된 시스템을 활용하면 효율적으로 건설 현장의 위험 상황을 관리할 수 있을 것으로 기대된다.

An Inference System for Deep Learning Model Based on Real-time Big Data (실시간 빅데이터 기반 딥러닝 모델 추론 시스템)

  • Park, Kyongseok;Yu, Chan Hee;Kim, Yuseon;Um, Jung-Ho
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.736-737
    • /
    • 2021
  • 최근의 빅데이터 처리 환경은 실시간 빅데이터를 기반으로 하고 있다. 실시간 빅데이터 처리를 위해서는 기존의 배치처리 방식의 빅데이터 기술에서 발생하는 기술적 요구를 포함하여 추가적으로 요구되는 다양한 문제들을 고려해야 한다. 기계학습 모형을 활용한 의사결정 지원 시스템의 경우 모형 개발을 위한 배치처리 기술과 함께 모형의 배포와 최적화 등도 고려되어야 하며 발전 설비나 제조, 공정, 배송 등의 분야에서 발생하는 대규모 실시간 데이터를 이용하여 추론을 수행해야 한다. 본 연구에서는 센서 데이터를 활용한 예측 모형 개발과 실시간 데이터 처리 그리고 추론을 위한 모델 배포와 최적화 과정을 지원하는 시스템 환경을 제공하여 실제 현장에서 발생하고 있는 데이터를 활용하여 실증을 수행하였다.

Through deep learning-based video processing, Design and implementation of Smart Port Parking Information System (딥 러닝 기반 영상처리를 통한 스마트 항만 주차정보시스템 설계 및 구현)

  • Koo, Changhun;Jung, Yoonjoo;Lee, Donggeon
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1342-1345
    • /
    • 2021
  • 최근 울산항에는 화물차가 정해진 화물차 주차장이 아닌 항만 내외에 불법주차를 하는 사례가 빈번하게 발생하고 있다. 본 논문은 이러한 문제를 해결하고자 화물차 주차장 이용을 활성화하는 방안을 연구하였다. 이에 따라 화물차 주차장의 주차 현황을 실시간으로 제공하는 딥 러닝(YOLOv4) 기반 영상분석방식의 스마트 항만 주차정보시스템을 제안한다. 더불어, 제시한 방안을 통해 주차장 이용이 활성화 되었을 때의 사회적 가치를 산정하여 기존과 비교하였다.

A Study of Succulent Home Gardening Assistance System Based on Deep Learning (딥러닝 기반 다육 식물 홈 가드닝 보조 시스템 연구)

  • Choi, Jiwon;Bae, Soohyeon;Cho, Seoyeon
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.697-699
    • /
    • 2021
  • 본 논문은 사람들이 다육식물을 키우는 데 실패하는 원인을 분석하고, 그에 따른 해결 방안으로 가드닝 보조 시스템을 연구한다. 사람들이 다육식물을 잘 키우지 못하는 이유를 세 가지로 분류하고 그 원인에 따른 해결방안을 딥러닝을 이용하여 제시한다.

Commercial location recommend system using deep learning data analysis (딥러닝 데이터 분석을 통한 최적의 상권 입지 추천 기술 개발)

  • Park, Hyeong-Bin;Kim, So-Hee;Nam, Ji-Su;Cho, Yoon-Bin;Jun, Hee-Gook;Im, Dong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.602-605
    • /
    • 2022
  • 본 연구는 대량의 상권 데이터를 바탕으로 머신 러닝과 딥러닝 분석을 이용하여 최적의 상권 입지를 추천하는 시스템 개발을 목표로 한다. 자영업자들의 오프라인 창업에 있어 개개인의 매장 정보에 기반한 입지 조건 판단은 앞으로의 매출에 중요한 시작점이다. 따라서 상권 정보를 기반으로 미래 매출을 예측하여 최적의 상권 입지를 추천하는 기술이 필요하다. 이를 위해 기존에 선행된 다수의 회귀 기법과 더불어 강하게 편향된 데이터를 레이블링 하여 다중 분류 기법으로도 문제를 접근한다. 최종적으로 딥러닝 모델과 합성하여 더 높은 성능을 이끌어내고 이로부터 편향 데이터 처리 방법과 딥러닝 모델과의 앙상블 중요성에 대해 논의하고자 한다.

Deep Learning-based Gait Authentication System (딥러닝 기반 걸음걸이 인증 시스템)

  • Choi, Ji-Woo;Choi, Sangil;Kang, Taewon
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.459-461
    • /
    • 2022
  • 개인 정보 보호가 중요시되는 초연결사회에서는 정보와 사용자를 연결하는 매개체는 적법하지 않은 사용자를 판별할 수 있어야 한다. 본 연구는 그 매개체를 스마트폰으로 삼고 인간의 걸음걸이에 기반한 스마트폰 인증 시스템을 제안한다. 인간의 걸음걸이를 딥러닝 모델 중 하나인 CNN으로 학습시킨 후, 스마트폰에 탑재하여 사용자가 스마트폰을 휴대한 상태로 7초간 걸음으로써 적법한 사용자인지 아닌지의 여부를 판별한다. 본 연구에서 제안한 모델의 평가 지표로는 정확도, 정밀도, 재현율, F1-score를 사용했으며, 그 결과, 위 4개의 평가지표 모두 평균 95% 이상의 결과를 얻었다.

Novel Automatic Plastic Bottle Distinguishing and Recycling Rate Improvement System Via Deep Learning (딥러닝을 통한 페트병 자동 분리수거 재활용률 개선 시스템)

  • Park, Jun-Seok;Yoo, Jae-Chern
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.547-549
    • /
    • 2022
  • 최근 소비경제의 폭발적 성장과 더불어 쓰레기로 인해 우리 생활 주변은 물론 해양까지 환경오염이 점점 심각해지고 있다. 그에 따른 재활용 시스템의 필요성이 높아지고 있으며, 지속 가능한 발전을 위해 세계적으로 환경을 위한 연구가 진행되고 있다. 본 논문에서는 딥러닝 기반의 AI 기술을 적극적으로 활용하여 분리수거가 아닌, 페트병을 재활용하는 과정을 집중적으로 개선한다. 이를 통하여, 페트병이 원인인 환경오염을 해결할 뿐만 아니라 고급 재활용 원료를 생산할 수 있게 하여 경제적인 효과도 얻을 수 있는 시스템을 제안한다.

Cleaning robot system with deep learning-based sidewalk environment recognition and waste sorting technology (딥러닝 기반 보도(步道) 환경 인식 및 쓰레기 분류 기술을 탑재한 청소로봇 시스템)

  • Lee, Jong-Soo;Lim, Kyeong-Min;Lee, Young-Min;Lim, Jun-Oh;Yang, Woo-Sung
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.925-927
    • /
    • 2022
  • 본 논문에서는 자율주행을 통해 보도를 청소하는 동안 분실물을 인지할 수 있는 로봇 시스템을 개발하였다. 분실물의 종류는 딥러닝 모델에 의해 지정되고 학습되며 로봇은 이를 인식하여 저장한다. 보도 경계 및 장애물을 감지하기 위해 Image-Segmentation 기술을 사용하였으며, 물체 감지에 사용되는 depth 카메라(d435)를 사용하였다. 학습하기 위한 딥러닝 모델로 YOLOv5 를 사용하였으며, 그 결과 정해진 사물을 인식하는 데 평균 84%의 정확도를 보였다. 이 시스템을 로봇에 적용할 경우 예상되는 효과로는 정확한 보도 인식으로 로봇이 경로를 이탈하지 않도록 하는 것, 유실물품의 신속하고 안전한 인계 등이 있다.

Obfuscated malware detection Approach using Dynamic and Static Analysis Data and Deep Learning (동적-정적 분석 데이터와 딥러닝을 이용한 난독화된 악성코드 탐지 기법)

  • Hae-Soo Kim;Mi-Hui Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.131-133
    • /
    • 2023
  • 악성코드를 유포할 때 프로그램 코드만으로 악성코드의 유무를 확인할 수 없도록 조치하여 분석을 지연시키는 방식을 사용하는 방향으로 발전하고 있다. 악성코드를 실행하지 않고 코드와 구조만으로 분석하는 정적 분석으로는 악성코드를 판별할 수 없어 코드를 직접 실행해 분석하는 동적 분석을 이용해야 한다. 본 논문에서는 난독화된 비정상적인 코드를 직접 실행한 동적 분석데이터와 일반적이지 않은 섹션들의 정보를 추출한 정적 분석데이터를 이용해 동적-정적 분석 데이터와 딥러닝 모델을 통해 난독화 및 패킹된 악성코드를 탐지하는 기법을 제안한다.