• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.03 seconds

A Student Modeling Technique for Developing Student′s Level Oriented Dynamic Tutoring System for Science Class (수준별 동적 교수.학습 시스템 개발을 위한 학습자 모델링 기법)

  • 김성희;김수형
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.2
    • /
    • pp.59-67
    • /
    • 2002
  • Major Characteristic of the 7th National Curriculum in science is to provide deep and supplementary learning, depending on the level of each learner. In the level-oriented curriculum, coursewares are used to present teaching materials to various levels. In most coursewares, however, they provide their contents at a uniform level and hence it is hard to expect level-oriented learning. This paper presents learner's modeling for developing student's level-oriented dynamic tutoring system for science class , Instructional module of this system made by component unit is able to be reconstructed dynamically. Learning module is constructed using a hybrid model mixed of Overlay and Bug model. Testing module interprets diagnostic errors to be established by given differentiated weight in accordance with item's difficulty and discrimination. Through ITS student modeling, this system presents various problem solving methods reconstructed by learner's level differentiated.

  • PDF

Comparative Evaluation of 18F-FDG Brain PET/CT AI Images Obtained Using Generative Adversarial Network (생성적 적대 신경망(Generative Adversarial Network)을 이용하여 획득한 18F-FDG Brain PET/CT 인공지능 영상의 비교평가)

  • Kim, Jong-Wan;Kim, Jung-Yul;Lim, Han-sang;Kim, Jae-sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.24 no.1
    • /
    • pp.15-19
    • /
    • 2020
  • Purpose Generative Adversarial Network(GAN) is one of deep learning technologies. This is a way to create a real fake image after learning the real image. In this study, after acquiring artificial intelligence images through GAN, We were compared and evaluated with real scan time images. We want to see if these technologies are potentially useful. Materials and Methods 30 patients who underwent 18F-FDG Brain PET/CT scanning at Severance Hospital, were acquired in 15-minute List mode and reconstructed into 1,2,3,4,5 and 15minute images, respectively. 25 out of 30 patients were used as learning images for learning of GAN and 5 patients used as verification images for confirming the learning model. The program was implemented using the Python and Tensorflow frameworks. After learning using the Pix2Pix model of GAN technology, this learning model generated artificial intelligence images. The artificial intelligence image generated in this way were evaluated as Mean Square Error(MSE), Peak Signal to Noise Ratio(PSNR), and Structural Similarity Index(SSIM) with real scan time image. Results The trained model was evaluated with the verification image. As a result, The 15-minute image created by the 5-minute image rather than 1-minute after the start of the scan showed a smaller MSE, and the PSNR and SSIM increased. Conclusion Through this study, it was confirmed that AI imaging technology is applicable. In the future, if these artificial intelligence imaging technologies are applied to nuclear medicine imaging, it will be possible to acquire images even with a short scan time, which can be expected to reduce artifacts caused by patient movement and increase the efficiency of the scanning room.

LSTM Network with Tracking Association for Multi-Object Tracking

  • Farhodov, Xurshedjon;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1236-1249
    • /
    • 2020
  • In a most recent object tracking research work, applying Convolutional Neural Network and Recurrent Neural Network-based strategies become relevant for resolving the noticeable challenges in it, like, occlusion, motion, object, and camera viewpoint variations, changing several targets, lighting variations. In this paper, the LSTM Network-based Tracking association method has proposed where the technique capable of real-time multi-object tracking by creating one of the useful LSTM networks that associated with tracking, which supports the long term tracking along with solving challenges. The LSTM network is a different neural network defined in Keras as a sequence of layers, where the Sequential classes would be a container for these layers. This purposing network structure builds with the integration of tracking association on Keras neural-network library. The tracking process has been associated with the LSTM Network feature learning output and obtained outstanding real-time detection and tracking performance. In this work, the main focus was learning trackable objects locations, appearance, and motion details, then predicting the feature location of objects on boxes according to their initial position. The performance of the joint object tracking system has shown that the LSTM network is more powerful and capable of working on a real-time multi-object tracking process.

Design and Implementation of Web Based Education Tool for Level Learning (수준별 학습을 위한 웹 기반 교육도구의 설계 및 구현)

  • 김옥남;임인택
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.252-256
    • /
    • 2000
  • In this paper, WBI tool is designed and implemented to meet the level teaming requirements. The system is composed of management part for teacher and user part for students. The management part supports the teacher to upload the lecture notes and the testing sheets, and to evaluate the testing results. The students can study the lecture notes and examine the online tests based on their teaming level. The students can evaluate their achievement by themselves after test and can study deep learning or supplementary learning. By applying the level teaming concept, the implemented can provide the interest to the students and enhance the degree of achievement.

  • PDF

Anomaly Diagnosis of Rotational Machinery Using Time-Series Vibration Data Based on Time-Distributed CNN-LSTM (시분할 CNN-LSTM 기반의 시계열 진동 데이터를 이용한 회전체 기계 설비의 이상 진단)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1547-1556
    • /
    • 2022
  • As mechanical facilities are interacting with each other, the failure of some equipment can affect the entire system, so it is necessary to quickly detect and diagnose the abnormality of mechanical equipment. This study proposes a deep learning model that can effectively diagnose abnormalities in rotating machinery and equipment. CNN is widely used for feature extraction and LSTMs are known to be effective in learning sequential information. In LSTM, the number of parameters and learning time increase as the length of input data increases. In this study, we propose a method of segmenting an input segment signal into shorter-length sub-segment signals, sequentially inputting them to CNN through a time-distributed method for extracting features, and inputting them into LSTM. A failure diagnosis test was performed using the vibration data collected from the motor for ventilation equipment installed at the urban railway station. The experiment showed an accuracy of 99.784% in fault diagnosis. It shows that the proposed method is effective in the fault diagnosis of rotating machinery and equipment.

Development of Artificial Intelligence Simulator of Seven Ordinary Poker Game (7포커 인공지능 시뮬레이터 구현)

  • Hur, Jong-Moon;Won, Jae-Yeon;Cho, Jae-hee;Rho, Young-J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.277-283
    • /
    • 2018
  • Some innovative researchers have had a dream of self-thinking intelligent computer. Alphago, at last, showed its possibility. With it, most computer engineers including even students can learn easily how to do it. As the interest to the deep learning has been growing, people's expectation is also naturally growing. In this research, we tried to enhance the game ability of a 7-poker system by applying machine learning techniques. In addition, we also tried to apply emotion analysis of a player to trace ones emotional changes. Methods and outcomes are to be explained in this paper.

Malware Detection with Directed Cyclic Graph and Weight Merging

  • Li, Shanxi;Zhou, Qingguo;Wei, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3258-3273
    • /
    • 2021
  • Malware is a severe threat to the computing system and there's a long history of the battle between malware detection and anti-detection. Most traditional detection methods are based on static analysis with signature matching and dynamic analysis methods that are focused on sensitive behaviors. However, the usual detections have only limited effect when meeting the development of malware, so that the manual update for feature sets is essential. Besides, most of these methods match target samples with the usual feature database, which ignored the characteristics of the sample itself. In this paper, we propose a new malware detection method that could combine the features of a single sample and the general features of malware. Firstly, a structure of Directed Cyclic Graph (DCG) is adopted to extract features from samples. Then the sensitivity of each API call is computed with Markov Chain. Afterward, the graph is merged with the chain to get the final features. Finally, the detectors based on machine learning or deep learning are devised for identification. To evaluate the effect and robustness of our approach, several experiments were adopted. The results showed that the proposed method had a good performance in most tests, and the approach also had stability with the development and growth of malware.

A Binary Classifier Using Fully Connected Neural Network for Alzheimer's Disease Classification

  • Prajapati, Rukesh;Kwon, Goo-Rak
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.21-32
    • /
    • 2022
  • Early-stage diagnosis of Alzheimer's Disease (AD) from Cognitively Normal (CN) patients is crucial because treatment at an early stage of AD can prevent further progress in the AD's severity in the future. Recently, computer-aided diagnosis using magnetic resonance image (MRI) has shown better performance in the classification of AD. However, these methods use a traditional machine learning algorithm that requires supervision and uses a combination of many complicated processes. In recent research, the performance of deep neural networks has outperformed the traditional machine learning algorithms. The ability to learn from the data and extract features on its own makes the neural networks less prone to errors. In this paper, a dense neural network is designed for binary classification of Alzheimer's disease. To create a classifier with better results, we studied result of different activation functions in the prediction. We obtained results from 5-folds validations with combinations of different activation functions and compared with each other, and the one with the best validation score is used to classify the test data. In this experiment, features used to train the model are obtained from the ADNI database after processing them using FreeSurfer software. For 5-folds validation, two groups: AD and CN are classified. The proposed DNN obtained better accuracy than the traditional machine learning algorithms and the compared previous studies for AD vs. CN, AD vs. Mild Cognitive Impairment (MCI), and MCI vs. CN classifications, respectively. This neural network is robust and better.

No-Reference Image Quality Assessment based on Quality Awareness Feature and Multi-task Training

  • Lai, Lijing;Chu, Jun;Leng, Lu
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.75-86
    • /
    • 2022
  • The existing image quality assessment (IQA) datasets have a small number of samples. Some methods based on transfer learning or data augmentation cannot make good use of image quality-related features. A No Reference (NR)-IQA method based on multi-task training and quality awareness is proposed. First, single or multiple distortion types and levels are imposed on the original image, and different strategies are used to augment different types of distortion datasets. With the idea of weak supervision, we use the Full Reference (FR)-IQA methods to obtain the pseudo-score label of the generated image. Then, we combine the classification information of the distortion type, level, and the information of the image quality score. The ResNet50 network is trained in the pre-train stage on the augmented dataset to obtain more quality-aware pre-training weights. Finally, the fine-tuning stage training is performed on the target IQA dataset using the quality-aware weights to predicate the final prediction score. Various experiments designed on the synthetic distortions and authentic distortions datasets (LIVE, CSIQ, TID2013, LIVEC, KonIQ-10K) prove that the proposed method can utilize the image quality-related features better than the method using only single-task training. The extracted quality-aware features improve the accuracy of the model.

Study of fall detection for the elderly based on long short-term memory(LSTM) (장단기 메모리 기반 노인 낙상감지에 대한 연구)

  • Jeong, Seung Su;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.249-251
    • /
    • 2021
  • In this paper, we introduce the deep-learning system using Tensorflow for recognizing situations that can occur fall situations when the elderly are moving or standing. Fall detection uses the LSTM (long short-term memory) learned using Tensorflow to determine whether it is a fall or not by data measured from wearable accelerator sensor. Learning is carried out for each of the 7 behavioral patterns consisting of 4 types of activity of daily living (ADL) and 3 types of fall. The learning was conducted using the 3-axis acceleration sensor data. As a result of the test, it was found to be compliant except for the GDSVM(Gravity Differential SVM), and it is expected that better results can be expected if the data is mixed and learned.

  • PDF