• Title/Summary/Keyword: Deep Learning AI

Search Result 582, Processing Time 0.031 seconds

Proposal of a Hypothesis Test Prediction System for Educational Social Precepts using Deep Learning Models

  • Choi, Su-Youn;Park, Dea-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.37-44
    • /
    • 2020
  • AI technology has developed in the form of decision support technology in law, patent, finance and national defense and is applied to disease diagnosis and legal judgment. To search real-time information with Deep Learning, Big data Analysis and Deep Learning Algorithm are required. In this paper, we try to predict the entrance rate to high-ranking universities using a Deep Learning model, RNN(Recurrent Neural Network). First, we analyzed the current status of private academies in administrative districts and the number of students by age in administrative districts, and established a socially accepted hypothesis that students residing in areas with a high educational fever have a high rate of enrollment in high-ranking universities. This is to verify based on the data analyzed using the predicted hypothesis and the government's public data. The predictive model uses data from 2015 to 2017 to learn to predict the top enrollment rate, and the trained model predicts the top enrollment rate in 2018. A prediction experiment was performed using RNN, a Deep Learning model, for the high-ranking enrollment rate in the special education zone. In this paper, we define the correlation between the high-ranking enrollment rate by analyzing the household income and the participation rate of private education about the current status of private institutes in regions with high education fever and the effect on the number of students by age.

Artificial Intelligence in Neuroimaging: Clinical Applications

  • Choi, Kyu Sung;Sunwoo, Leonard
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Artificial intelligence (AI) powered by deep learning (DL) has shown remarkable progress in image recognition tasks. Over the past decade, AI has proven its feasibility for applications in medical imaging. Various aspects of clinical practice in neuroimaging can be improved with the help of AI. For example, AI can aid in detecting brain metastases, predicting treatment response of brain tumors, generating a parametric map of dynamic contrast-enhanced MRI, and enhancing radiomics research by extracting salient features from input images. In addition, image quality can be improved via AI-based image reconstruction or motion artifact reduction. In this review, we summarize recent clinical applications of DL in various aspects of neuroimaging.

Fashion attribute-based mixed reality visualization service (패션 속성기반 혼합현실 시각화 서비스)

  • Yoo, Yongmin;Lee, Kyounguk;Kim, Kyungsun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.2-5
    • /
    • 2022
  • With the advent of deep learning and the rapid development of ICT (Information and Communication Technology), research using artificial intelligence is being actively conducted in various fields of society such as politics, economy, and culture and so on. Deep learning-based artificial intelligence technology is subdivided into various domains such as natural language processing, image processing, speech processing, and recommendation system. In particular, as the industry is advanced, the need for a recommendation system that analyzes market trends and individual characteristics and recommends them to consumers is increasingly required. In line with these technological developments, this paper extracts and classifies attribute information from structured or unstructured text and image big data through deep learning-based technology development of 'language processing intelligence' and 'image processing intelligence', and We propose an artificial intelligence-based 'customized fashion advisor' service integration system that analyzes trends and new materials, discovers 'market-consumer' insights through consumer taste analysis, and can recommend style, virtual fitting, and design support.

  • PDF

Trends of Plant Image Processing Technology (이미지 기반의 식물 인식 기술 동향)

  • Yoon, Y.C.;Sang, J.H.;Park, S.M.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.54-60
    • /
    • 2018
  • In this paper, we analyze the trends of deep-learning based plant data processing technologies. In recent years, the deep-learning technology has been widely applied to various AI tasks, such as vision (image classification, image segmentation, and so on) and natural language processing because it shows a higher performance on such tasks. The deep-leaning method is also applied to plant data processing tasks and shows a significant performance. We analyze and show how the deep-learning method is applied to plant data processing tasks and related industries.

Generation of ship's passage plan based on deep reinforcement learning (심층 강화학습 기반의 선박 항로계획 수립)

  • Hyeong-Tak Lee;Hyun Yang;Ik-Soon Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.230-231
    • /
    • 2023
  • This study proposes a deep reinforcement learning-based algorithm to automatically generate a ship's passage plan. First, Busan Port and Gwangyang Port were selected as target areas, and a container ship with a draft of 16m was designated as the target vessel. The experimental results showed that the ship's passage plan generated using deep reinforcement learning was more efficient than the Q-learning-based algorithm used in previous research. This algorithm presents a method to generate a ship's passage plan automatically and can contribute to improving maritime safety and efficiency.

  • PDF

Application of Artificial Intelligence in Gastric Cancer (위암에서 인공지능의 응용)

  • Jung In Lee
    • Journal of Digestive Cancer Research
    • /
    • v.11 no.3
    • /
    • pp.130-140
    • /
    • 2023
  • Gastric cancer (GC) is one of the most common malignant tumors worldwide, with a 5-year survival rate of < 40%. The diagnosis and treatment decisions of GC rely on human experts' judgments on medical images; therefore, the accuracy can be hindered by image condition, objective criterion, limited experience, and interobserver discrepancy. In recent years, several applications of artificial intelligence (AI) have emerged in the GC field based on improvement of computational power and deep learning algorithms. AI can support various clinical practices in endoscopic examination, pathologic confirmation, radiologic staging, and prognosis prediction. This review has systematically summarized the current status of AI applications after a comprehensive literature search. Although the current approaches are challenged by data scarcity and poor interpretability, future directions of this field are likely to overcome the risk and enhance their accuracy and applicability in clinical practice.

Predicting Oxynitrification layer using AI-based Varying Coefficient Regression model (AI 기반의 Varying Coefficient Regression 모델을 이용한 산질화층 예측)

  • Hye Jung Park;Joo Yong Shim;Kyong Jun An;Chang Ha Hwang;Je Hyun Han
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.374-381
    • /
    • 2023
  • This study develops and evaluates a deep learning model for predicting oxide and nitride layers based on plasma process data. We introduce a novel deep learning-based Varying Coefficient Regressor (VCR) by adapting the VCR, which previously relied on an existing unique function. This model is employed to forecast the oxide and nitride layers within the plasma. Through comparative experiments, the proposed VCR-based model exhibits superior performance compared to Long Short-Term Memory, Random Forest, and other methods, showcasing its excellence in predicting time series data. This study indicates the potential for advancing prediction models through deep learning in the domain of plasma processing and highlights its application prospects in industrial settings.

A Comparison and Analysis of Deep Learning Framework (딥 러닝 프레임워크의 비교 및 분석)

  • Lee, Yo-Seob;Moon, Phil-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.115-122
    • /
    • 2017
  • Deep learning is artificial intelligence technology that can teach people like themselves who need machine learning. Deep learning has become of the most promising in the development of artificial intelligence to understand the world and detection technology, and Google, Baidu and Facebook is the most developed in advance. In this paper, we discuss the kind of deep learning frameworks, compare and analyze the efficiency of the image and speech recognition field of it.

Implementation of Pre-Post Process for Accuraty Improvement of OCR Recognition Engine Based on Deep-Learning Technology (딥러닝 기반 OCR 인식 엔진의 정확도 향상을 위한 전/후처리기 기술 구현)

  • Jang, Chang-Bok;Kim, Ki-Bong
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.163-170
    • /
    • 2022
  • With the advent of the 4th Industrial Revolution, solutions that apply AI technology are being actively developed. Since 2017, the introduction of business automation solutions using AI-based Robotic Process Automation (RPA) has begun in the financial sector and insurance companies, and recently, it is entering a time when it spreads past the stage of introducing RPA solutions. Among the business automation using these RPA solutions, it is very important how accurately textual information in the document is recognized for business automation using various documents. Such character recognition has recently increased its accuracy by introducing deep learning technology, but there is still no recognition model with perfect recognition accuracy. Therefore, in this paper, we checked how much accuracy is improved when pre- and post-processor technologies are applied to deep learning-based character recognition engines, and implemented RPA recognition engines and linkage technologies.

Implementation of AI Exercise Therapy System customized for Kidney Disease (신장 질환 맞춤형 AI 운동요법 제공 시스템 구현)

  • Park, Gijo;Lee, Byunghoon;Kim, Kyungseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.37-42
    • /
    • 2022
  • In this paper, AI methods such as deep learning are applied to provide customized exercise therapy for patients with kidney disease. In order to apply deep learning, a dataset that can determine kidney disease is trained to determine whether it is a kidney disease, and 1RM, which is the user's physical information and muscle strength according to whether it is a disease, can also be calculated through deep learning. The calculated muscle strength of 1RM was converted into resistant exercise for each part through a calculation equation for each part of the body, and was configured to be provided with an aerobic exercise amount tailored to the user's body information. If continuous research is conducted in the manner proposed in this paper, customized exercise therapy can be provided for various diseases.