• Title/Summary/Keyword: Deep Ensemble Classification

Search Result 44, Processing Time 0.021 seconds

Tomato Crop Disease Classification Using an Ensemble Approach Based on a Deep Neural Network (심층 신경망 기반의 앙상블 방식을 이용한 토마토 작물의 질병 식별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1250-1257
    • /
    • 2020
  • The early detection of diseases is important in agriculture because diseases are major threats of reducing crop yield for farmers. The shape and color of plant leaf are changed differently according to the disease. So we can detect and estimate the disease by inspecting the visual feature in leaf. This study presents a vision-based leaf classification method for detecting the diseases of tomato crop. ResNet-50 model was used to extract the visual feature in leaf and classify the disease of tomato crop, since the model showed the higher accuracy than the other ResNet models with different depths. We propose a new ensemble approach using several DCNN classifiers that have the same structure but have been trained at different ranges in the DCNN layers. Experimental result achieved accuracy of 97.19% for PlantVillage dataset. It validates that the proposed method effectively classify the disease of tomato crop.

Ensemble Knowledge Distillation for Classification of 14 Thorax Diseases using Chest X-ray Images (흉부 X-선 영상을 이용한 14 가지 흉부 질환 분류를 위한 Ensemble Knowledge Distillation)

  • Ho, Thi Kieu Khanh;Jeon, Younghoon;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.313-315
    • /
    • 2021
  • Timely and accurate diagnosis of lung diseases using Chest X-ray images has been gained much attention from the computer vision and medical imaging communities. Although previous studies have presented the capability of deep convolutional neural networks by achieving competitive binary classification results, their models were seemingly unreliable to effectively distinguish multiple disease groups using a large number of x-ray images. In this paper, we aim to build an advanced approach, so-called Ensemble Knowledge Distillation (EKD), to significantly boost the classification accuracies, compared to traditional KD methods by distilling knowledge from a cumbersome teacher model into an ensemble of lightweight student models with parallel branches trained with ground truth labels. Therefore, learning features at different branches of the student models could enable the network to learn diverse patterns and improve the qualify of final predictions through an ensemble learning solution. Although we observed that experiments on the well-established ChestX-ray14 dataset showed the classification improvements of traditional KD compared to the base transfer learning approach, the EKD performance would be expected to potentially enhance classification accuracy and model generalization, especially in situations of the imbalanced dataset and the interdependency of 14 weakly annotated thorax diseases.

  • PDF

Classification Algorithm for Liver Lesions of Ultrasound Images using Ensemble Deep Learning (앙상블 딥러닝을 이용한 초음파 영상의 간병변증 분류 알고리즘)

  • Cho, Young-Bok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.101-106
    • /
    • 2020
  • In the current medical field, ultrasound diagnosis can be said to be the same as a stethoscope in the past. However, due to the nature of ultrasound, it has the disadvantage that the prediction of results is uncertain depending on the skill level of the examiner. Therefore, this paper aims to improve the accuracy of liver lesion detection during ultrasound examination based on deep learning technology to solve this problem. In the proposed paper, we compared the accuracy of lesion classification using a CNN model and an ensemble model. As a result of the experiment, it was confirmed that the classification accuracy in the CNN model averaged 82.33% and the ensemble model averaged 89.9%, about 7% higher. Also, it was confirmed that the ensemble model was 0.97 in the average ROC curve, which is about 0.4 higher than the CNN model.

Accuracy Assessment of Land-Use Land-Cover Classification Using Semantic Segmentation-Based Deep Learning Model and RapidEye Imagery (RapidEye 위성영상과 Semantic Segmentation 기반 딥러닝 모델을 이용한 토지피복분류의 정확도 평가)

  • Woodam Sim;Jong Su Yim;Jung-Soo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.269-282
    • /
    • 2023
  • The purpose of this study was to construct land cover maps using a deep learning model and to select the optimal deep learning model for land cover classification by adjusting the dataset such as input image size and Stride application. Two types of deep learning models, the U-net model and the DeeplabV3+ model with an Encoder-Decoder network, were utilized. Also, the combination of the two deep learning models, which is an Ensemble model, was used in this study. The dataset utilized RapidEye satellite images as input images and the label images used Raster images based on the six categories of the land use of Intergovernmental Panel on Climate Change as true value. This study focused on the problem of the quality improvement of the dataset to enhance the accuracy of deep learning model and constructed twelve land cover maps using the combination of three deep learning models (U-net, DeeplabV3+, and Ensemble), two input image sizes (64 × 64 pixel and 256 × 256 pixel), and two Stride application rates (50% and 100%). The evaluation of the accuracy of the label images and the deep learning-based land cover maps showed that the U-net and DeeplabV3+ models had high accuracy, with overall accuracy values of approximately 87.9% and 89.8%, and kappa coefficients of over 72%. In addition, applying the Ensemble and Stride to the deep learning models resulted in a maximum increase of approximately 3% in accuracy and an improvement in the issue of boundary inconsistency, which is a problem associated with Semantic Segmentation based deep learning models.

Data Correction For Enhancing Classification Accuracy By Unknown Deep Neural Network Classifiers

  • Kwon, Hyun;Yoon, Hyunsoo;Choi, Daeseon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3243-3257
    • /
    • 2021
  • Deep neural networks provide excellent performance in pattern recognition, audio classification, and image recognition. It is important that they accurately recognize input data, particularly when they are used in autonomous vehicles or for medical services. In this study, we propose a data correction method for increasing the accuracy of an unknown classifier by modifying the input data without changing the classifier. This method modifies the input data slightly so that the unknown classifier will correctly recognize the input data. It is an ensemble method that has the characteristic of transferability to an unknown classifier by generating corrected data that are correctly recognized by several classifiers that are known in advance. We tested our method using MNIST and CIFAR-10 as experimental data. The experimental results exhibit that the accuracy of the unknown classifier is a 100% correct recognition rate owing to the data correction generated by the proposed method, which minimizes data distortion to maintain the data's recognizability by humans.

CNN-based Weighted Ensemble Technique for ImageNet Classification (대용량 이미지넷 인식을 위한 CNN 기반 Weighted 앙상블 기법)

  • Jung, Heechul;Choi, Min-Kook;Kim, Junkwang;Kwon, Soon;Jung, Wooyoung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.4
    • /
    • pp.197-204
    • /
    • 2020
  • The ImageNet dataset is a large scale dataset and contains various natural scene images. In this paper, we propose a convolutional neural network (CNN)-based weighted ensemble technique for the ImageNet classification task. First, in order to fuse several models, our technique uses weights for each model, unlike the existing average-based ensemble technique. Then we propose an algorithm that automatically finds the coefficients used in later ensemble process. Our algorithm sequentially selects the model with the best performance of the validation set, and then obtains a weight that improves performance when combined with existing selected models. We applied the proposed algorithm to a total of 13 heterogeneous models, and as a result, 5 models were selected. These selected models were combined with weights, and we achieved 3.297% Top-5 error rate on the ImageNet test dataset.

Malwares Attack Detection Using Ensemble Deep Restricted Boltzmann Machine

  • K. Janani;R. Gunasundari
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.64-72
    • /
    • 2024
  • In recent times cyber attackers can use Artificial Intelligence (AI) to boost the sophistication and scope of attacks. On the defense side, AI is used to enhance defense plans, to boost the robustness, flexibility, and efficiency of defense systems, which means adapting to environmental changes to reduce impacts. With increased developments in the field of information and communication technologies, various exploits occur as a danger sign to cyber security and these exploitations are changing rapidly. Cyber criminals use new, sophisticated tactics to boost their attack speed and size. Consequently, there is a need for more flexible, adaptable and strong cyber defense systems that can identify a wide range of threats in real-time. In recent years, the adoption of AI approaches has increased and maintained a vital role in the detection and prevention of cyber threats. In this paper, an Ensemble Deep Restricted Boltzmann Machine (EDRBM) is developed for the classification of cybersecurity threats in case of a large-scale network environment. The EDRBM acts as a classification model that enables the classification of malicious flowsets from the largescale network. The simulation is conducted to test the efficacy of the proposed EDRBM under various malware attacks. The simulation results show that the proposed method achieves higher classification rate in classifying the malware in the flowsets i.e., malicious flowsets than other methods.

Ensemble Learning Based on Tumor Internal and External Imaging Patch to Predict the Recurrence of Non-small Cell Lung Cancer Patients in Chest CT Image (흉부 CT 영상에서 비소세포폐암 환자의 재발 예측을 위한 종양 내외부 영상 패치 기반 앙상블 학습)

  • Lee, Ye-Sel;Cho, A-Hyun;Hong, Helen
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.373-381
    • /
    • 2021
  • In this paper, we propose a classification model based on convolutional neural network(CNN) for predicting 2-year recurrence in non-small cell lung cancer(NSCLC) patients using preoperative chest CT images. Based on the region of interest(ROI) defined as the tumor internal and external area, the input images consist of an intratumoral patch, a peritumoral patch and a peritumoral texture patch focusing on the texture information of the peritumoral patch. Each patch is trained through AlexNet pretrained on ImageNet to explore the usefulness and performance of various patches. Additionally, ensemble learning of network trained with each patch analyzes the performance of different patch combination. Compared with all results, the ensemble model with intratumoral and peritumoral patches achieved the best performance (ACC=98.28%, Sensitivity=100%, NPV=100%).

Deep Learning Forecast model for City-Gas Acceptance Using Extranoues variable (외재적 변수를 이용한 딥러닝 예측 기반의 도시가스 인수량 예측)

  • Kim, Ji-Hyun;Kim, Gee-Eun;Park, Sang-Jun;Park, Woon-Hak
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.5
    • /
    • pp.52-58
    • /
    • 2019
  • In this study, we have developed a forecasting model for city- gas acceptance. City-gas corporations have to report about city-gas sale volume next year to KOGAS. So it is a important thing to them. Factors influenced city-gas have differences corresponding to usage classification, however, in city-gas acceptence, it is hard to classificate. So we have considered tha outside temperature as factor that influence regardless of usage classification and the model development was carried out. ARIMA, one of the traditional time series analysis, and LSTM, a deep running technique, were used to construct forecasting models, and various Ensemble techniques were used to minimize the disadvantages of these two methods.Experiments and validation were conducted using data from JB Corp. from 2008 to 2018 for 11 years.The average of the error rate of the daily forecast was 0.48% for Ensemble LSTM, the average of the error rate of the monthly forecast was 2.46% for Ensemble LSTM, And the absolute value of the error rate is 5.24% for Ensemble LSTM.

Recent deep learning methods for tabular data

  • Yejin Hwang;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.215-226
    • /
    • 2023
  • Deep learning has made great strides in the field of unstructured data such as text, images, and audio. However, in the case of tabular data analysis, machine learning algorithms such as ensemble methods are still better than deep learning. To keep up with the performance of machine learning algorithms with good predictive power, several deep learning methods for tabular data have been proposed recently. In this paper, we review the latest deep learning models for tabular data and compare the performances of these models using several datasets. In addition, we also compare the latest boosting methods to these deep learning methods and suggest the guidelines to the users, who analyze tabular datasets. In regression, machine learning methods are better than deep learning methods. But for the classification problems, deep learning methods perform better than the machine learning methods in some cases.