• Title/Summary/Keyword: Deep Cement Mixing method

Search Result 46, Processing Time 0.022 seconds

Mechanical Properties of Lean-mixed Cement-treated Soil for Effective Reuse of Dredged Clay (준설점토의 친환경 재활용을 위한 시멘트계 처리토의 장단기 역학거동)

  • Kwon, Youngcheul;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.71-78
    • /
    • 2011
  • Cement treating technique, such as deep mixing method, has been used widely to stabilize the dredged clayey soil for many years. Despite of its effectiveness in treating soil by cement, several efforts have also been made to try to reduce the side effect of the cement that used to stabilize the dredged clay. However, authors considered that more detailed study on the physical and mechanical properties of lean-mixed soil-cement has been required to establish the design procedure to apply the practical problems. Therefore, in this study, the curing time and mixing ratio was used as key parameters to estimate the physical and mechanical properties including long-term behavior. The unconfined strength of lean-mixed soil-cement increase continuously during curing period, 270 days, while increasing rate becomes low in ordinary cement-treated dredged clay. We also concluded that cement-treated dredging clay shows apparent quasi overconsolidation behavior even in low cement proportion. By this study, fundamental approach was carried out for effective reuse of very soft dredged clayey soil both in mechanical and environmental aspect. It can be also expected that this study can propose a basic design data to use the lean-mixed soil cement.

Centrifuge Modeling and Numerical Analysis on Breakwater Construction (방파제 축조공사의 Centrifuge 모델링과 수치해석)

  • Yoo, Nam-Jae;Kim, Dong-Gun;Yoon, Dae-Hee
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.81-90
    • /
    • 2011
  • Centrifuge modeling and numerical analysis on works of breakwater construction were performed to investigate the behavior of caisson type of breakwater and foundation treated with the method of DCM (Deep Cement Mixing) under the condition of wave action in field. In centrifuge modeling, construction sequence of breakwater caisson such as preparation of ground, treatment of DCM, installation of rubble mound, placement of breakwater caisson and lateral loading on the breakwater due to wave action were reconstructed. Lateral movement of model breakwater and ground reaction in the vertical direction were monitored during test. Stress concentration ratio between the untreated ground and the treated ground with DCM was evaluated from measurement of vertical stresses on each ground. Numerical analysis with the software of PLAXIS was carried to compare with Results of centrifuge model test. It was found that stability of model breakwater was maintained during stage of construction and the compared results about stress concentration ratio were in relatively good agreements.

  • PDF

Development of Valve Monitoring System (밸브 모니터링 시스템 개발)

  • Kim, Gwan-hyung;Oh, Am-suk;Kim, Sung-dae;Kong, Suk-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.518-519
    • /
    • 2017
  • 사물인터넷(IoT) 기술의 발달로 인하여 간단한 개인 장비에서부터 다양한 산업장비에까지 IoT 기술을 접목해 나가고 있으며, 유체 및 기타 동작을 단속할 수 있는 밸브에까지 다양하게 접목해 나가고 있다. 현재 국내의 소규모 회사에서 DCM(Deep Cement Mixing Method) 공법에 사용되는 장비의 동작 특성인 시멘트 흐름을 단속할 수 있는 고온/고압에 견딜 수 있는 밸브를 제작하고 판매하고 있다. 그러한 특수한 밸브 시스템에 사물인터넷(IoT) 기술을 접목하여 작동되는 밸브를 원격으로 관리할 수는 원격지 관리시스템 및 간단한 밸브 상태계측 모듈을 연구개발하여 적용 가능성을 검토하고자 한다.

  • PDF

Numerical calculation and test of the composite materials under dynamic loading

  • Liu, Fei;Li, Lianghui
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.79-86
    • /
    • 2021
  • Due to the complex geological conditions, a large number of high quality coal seams was buried in the western of China which cannot be mining in open-pit methods. The dynamic properties of that coal cannot be studied easily in real site for the complex working condition. The compound coal blocks made on the basis of the real situation were studied in the laboratory. The physical and mechanical properties of the compound coal blocks and the raw coal were contrasted by using the UCS tests. The results show that the compound coal blocks made by mixing coal powder, cement and water in proportion of 2.5:2:1 are the closest to that of standard raw coal. Then the propagation of strain waves and crushing effects on the coal were studied in the compound coal blocks by using the super dynamic strain test system and the numerical calculated method of ANSYS/LS-DYNA. The results show that the diameter of the crushing zone in the compound coal blocks was similar to that in the numerical results. The fractures distribution in laboratory tests also has a similar trend to the calculation results. The measured strain waves at the distance of 50 cm, 100 cm, and 150 cm from the center of the charge are mainly concerned at -1.0×104 με and have a similar trend as that in the numerical simulation.

Estimation of Allowable Bearing Capacity and Settlement of Deep Cement Mixing Method for Reinforcing the Greenhouse Foundation on Reclaimed Land (간척지 온실기초 보강을 위한 심층혼합처리공법의 허용지내력 및 침하량 산정)

  • Lee, Haksung;Kang, Bang Hun;Lee, Kwang-seung;Lee, Su Hwan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.287-294
    • /
    • 2021
  • In order to expand facility agriculture and reduce greenhouse construction costs in reclaimed land, a greenhouse foundation method that satisfies economic feasibility and structural safety at the same time is required. As an alternative, the allowable bearing capacity and settlement were reviewed when the DCM(Deep cement mixing) method was applied among the soft ground reinforcement methods. To examine the applicability of the greenhouse foundation, the allowable bearing capacity and settlement were calculated by applying the theory of Terzaghi, Meyerhof, Hansen, and Schmertmann. In case of the diameter of 800mm and the width and length of the foundation of 4m, the allowable bearing capacity was 179kN/m2 and the settlement was 7.25mm, which satisfies the required bearing capacity and settlement standards. The calculation results were verified through FEM(Finite element method) analysis using the Mohr-Coulomb material model. The allowable bearing capacity was 169kN/m2 and the settlement was 2.52mm. The bearing capacity showed an error of 5.6% compared to calculated value, and the settlement showed and error of 65.4%. Through theoretical calculations and FEM analysis, it was confirmed that the allowable bearing capacity and settlement satisfies the design criteria as a greenhouse foundation when the width and length of the foundation were 4m. Based on the verified design values, it is expected to be able to present the foundation design criteria for greenhouses through empirical tests such as bearing capacity tests and long-term settlement monitoring.

EDNN based prediction of strength and durability properties of HPC using fibres & copper slag

  • Gupta, Mohit;Raj, Ritu;Sahu, Anil Kumar
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.185-194
    • /
    • 2022
  • For producing cement and concrete, the construction field has been encouraged by the usage of industrial soil waste (or) secondary materials since it decreases the utilization of natural resources. Simultaneously, for ensuring the quality, the analyses of the strength along with durability properties of that sort of cement and concrete are required. The prediction of strength along with other properties of High-Performance Concrete (HPC) by optimization and machine learning algorithms are focused by already available research methods. However, an error and accuracy issue are possessed. Therefore, the Enhanced Deep Neural Network (EDNN) based strength along with durability prediction of HPC was utilized by this research method. Initially, the data is gathered in the proposed work. Then, the data's pre-processing is done by the elimination of missing data along with normalization. Next, from the pre-processed data, the features are extracted. Hence, the data input to the EDNN algorithm which predicts the strength along with durability properties of the specific mixing input designs. Using the Switched Multi-Objective Jellyfish Optimization (SMOJO) algorithm, the weight value is initialized in the EDNN. The Gaussian radial function is utilized as the activation function. The proposed EDNN's performance is examined with the already available algorithms in the experimental analysis. Based on the RMSE, MAE, MAPE, and R2 metrics, the performance of the proposed EDNN is compared to the existing DNN, CNN, ANN, and SVM methods. Further, according to the metrices, the proposed EDNN performs better. Moreover, the effectiveness of proposed EDNN is examined based on the accuracy, precision, recall, and F-Measure metrics. With the already-existing algorithms i.e., JO, GWO, PSO, and GA, the fitness for the proposed SMOJO algorithm is also examined. The proposed SMOJO algorithm achieves a higher fitness value than the already available algorithm.

The Case Study on Risk Assessment and Probability of Failure for Port Structure Reinforced by DCM Method (심층혼합처리공법이 적용된 항만 구조물의 파괴확률과 위험도 평가에 관한 사례 연구)

  • Kim, Byung Il;Park, Eon Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.53-64
    • /
    • 2018
  • In this study, the evaluation to probability of failure for risk assessment of port structures on DCM reinforced soils, where stability and risk assessment are increasing in importance, was performed. As a random variables affecting the risk of DCM improved ground, the design strength, superposition (overlap) of construction, strength of the natural ground, internal friction angle and unit weight of the modified ground were selected and applied to the risk assessment. In addition, the failure probability for the entire system under ordinary conditions and under earthquake conditions were analyzed. As a result, it was found that the highest coefficient of variation in the random variable for the risk assessment of the DCM improved ground is the design strength, but this does not have a great influence on the safety factor, ie, the risk of the system. The main risk factor for the failure probability of the system for the DCM reinforced soils was evaluated as horizontal sliding in case of external stability and compression failure in case of internal stability both at ordinary condition and earthquake condition. In addition, the failure probability for ordinary horizontal sliding is higher than that for earthquake failure, and the failure probability for ordinary compression failure is lower than that for earthquake failure. The ordinary failure probability of the entire system is similar to the failure probability on earthquake condition, but in this case, the risk of earthquake is somewhat higher.

A Comparative Study of Structural Analysis on DCM Improved by Pile and Block Type (말뚝식과 블록식이 혼합된 시멘트혼합처리공법(DCM)의 구조체 해석 비교 연구)

  • Shin, Hyun Young;Kim, Byung Il;Kim, Kyoung O;Han, Sang Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.5-19
    • /
    • 2014
  • In this study, the structural analysis is performed on the method of shallow block and deep cement mixing pile, and then their characteristics and associated behaviors were analyzed. In the case of continuous beam analysis, the predicted settlement was very small, and shear force and bending stress are somewhat overestimated. The frame method is similar to numerical analysis in the internal force shallow block and long pile, but because the settlement of pile is underestimated, the additional calculation using the reaction of the long pile is necessary. For soil arching method and piled raft foundation method, the excessive axial force of long pile was predicted because the load sharing of pile is very large compared to the other methods. In the behavior of the shallow block and deep pile method, the settlement of shallow block and contact pressure are much in the center than the edge. In the estimating method considering the interaction between improved material and ground, the load sharing of the soil-cement pile ranges from 20% to 45%, and the stress ratio is 2.0~5.0 less than piled DCM. The maximum member forces at the boundary conditions of pile head are similar, but in fixed head the axial force and vertical displacement are different in accordance with pile arrangement.

A Feasibility Study on the Deep Soil Mixing Barrier to Control Contaminated Groundwater (오염지하수의 확산방지를 위한 대체 혼합차수재의 적용에 관한 연구)

  • 김윤희;임동희;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.53-59
    • /
    • 2001
  • There is a lot of method to manage the insanitary landfill but vertical cutoff walls have been widespreadly used and were installed into the subsurface to act as a barrier to horizontal groundwater flow, The stabilized material such as specialized cement or mixed soil with additives has been generally applied for the materials of the deep soil mixing barrier in korea. The amount of the stabilized material is dependent on the field conditions, because the mixing ratio of the material and the field soil should achieve a requirement in the coefficient of permeability, lower than 1.0$\times$$10^{7}$cm/sec. This study determined the quantity and optimized function ratio of the stabilized material in the formation process of the mixed barrier that was added with stabilized material on the field soil classified into SW-SC under USCS (Unified Soil Classification System). After that the fly ash and lime were selected as an additives an that could improve the function of the stabilized material and then the method to improve the functional progress in the usage of putting into the stabilized material as an appropriate ratio was studied and reviewed. The author used the flexible-wall permeameter for measuring the permeability and unconfined compressive strength tester for compressive strength, and in the view of environmental engineering the absorption test of heavy metals and leaching test regulated by Korean Waste Management Act were performed. As the results, the suitable mixing ratio of the stabilized material in the deep soil mixing barrier was determined as 13 percent. To make workability easy, the ratio of stabilized material and water was proven to be 1 : 1.5. With the results, the range of the portion of the additives(fly ash : lime= 70 : 30) was proven to be 20-40% for improving the function of the stabilized material, lowering of permeability. In heavy metal absorption assessment of the mixing barrier system with the additives, the result of heavy metal absorption was proved to be almost same with the case of the original stabilized material; high removal efficiency of heavy metals. In addition, the leaching concentration of heavy metals from the leaching test for the environmental hazard assessment showed lower than the regulated criteria.

  • PDF

Characteristics of Unconfined Compressive Strength of Dredged Clay Mixed with Friendly Soil Hardening Agent (준설토와 친토양 경화재 혼합지반의 일축강도특성)

  • Oh, Sewook;Yeon, Yonghum;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.73-81
    • /
    • 2016
  • In the construction on low strength and high compressible soft ground, the many problems have been occurred in recent construction project. therefore, the soil improvement have been developed to obtain high strength in relatively short period of curing time. Based on the laboratory tests using undisturbed marine clay, the effect of improvement on soft ground was estimated. Deep mixing method by cement have been virtually used for decades to improve the mechanical properties of soft ground. However, previous researches set the focus on the short term strength the about 10% of cement treated clay. In this paper, cement and Natural Soil Stabilizer (NSS) were used as the stabilizing agent to obtain trafficability and mechanical strength of the soft clay. Based on the several laboratory tests, optimum condition was proposed to ensure the mechanical strength and compressibility as the foundation soil using cement and NSS mixed soil. Finally, research data was proposed about the applicability of NSS as the stabilizing agent to soft clay to increase the mechanical strength of soil.