• Title/Summary/Keyword: Decoupled Method

Search Result 205, Processing Time 0.025 seconds

LINBAR DECOUPLING CONTROL OF ROTOR SPEED AND ROTOR FLUX IN INDUCTION MOTOR FOR HIGH DYNAMIC PERFORMANCE AND MAXIMAL POWER BFFICLENCY (동적 고성능과 최대 전력 효율을 위한 유도 전동기 회전자 속도와 회전자 자속의 선형 비간섭 제어)

  • Kim, Dong-Il;Ha, In-Joong;Ko, Myoung-Sam;Park, Jae-Wha
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.48-53
    • /
    • 1989
  • We attempt to achieve both high dynamic performance and maximal power efficiency by means of linear decoupling of rotor speed (or motor torque) and rotor flux. The induction motor with our controller possesses the input-output dynamic characteristics of a linear system such that the rotor speed (or motor torque) and the rotor flux are decoupled. The rotor speed (or motor torque) responses are not affected by abrupt changes in the rotor flux and vice versa. The rotor flux need not be measured but is estimated by the well-known flux simulator. The effect of large variation in the rotor resistance on the control performances is minimized by employing a parameter adaptation method. To illuminate the significance of our work. we present simulation and experimental results as well as mathematical performance analyses.

  • PDF

Human Postural Response to Linear Perturbation (선형외란에 대응하는 인체의 자세응답 해석)

  • Kim, Se-Young;Park, Su-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Human postural responses appeared to have stereotyped modality, such as ankle mode, knee mode and hip mode in response to various perturbations. We examined whether human postural control gain of full-state feedback could be decoupled along with the eigenvector. To verify the model, postural responses subjected to fast backward perturbation were used. Upright posture was modeled as 3-segment inverted pendulum incorporated with feedback control, and joint torques were calculated using inverse dynamics. Postural modalities such as ankle, knee and hip mode were obtained from eigenvectors of biomechanical model. As oppose to the full-state feedback control, independent eigenvector control assumes that modal control input is determined by the linear combination of corresponding modality. We used optimization method to obtain and compare the feedback gains for both independent eigenvector control and full-state feedback control. As a result, we found that simulation result of eigenvector feedback was not competitive in comparison with that of full-state feedback control. This implies that the CNS would make use of full-state body information to generate compensative joint torques.

Tracking Control of Servo System using Fuzzy Logic Cross Coupled Controller (퍼지 논리형 상호결합 제어기를 이용한 서보 시스템의 추적제어)

  • 신두진;허욱열
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.361-366
    • /
    • 2001
  • This thesis proposes a fuzzy logic cross coupled controller for a multi axis servo system. The overall control system consists of three elements: the axial position controller, the speed controller, and a fuzzy logic cross coupled controller. In conventional multi axis servo system, the motion of each axis is controlled independently without regard to the motion of other axes, in which the contour error, defined as the shortest distance between the desired and actual contours is compensated only by the position error of each axis. This decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties, Therefore, the multi axis servo system must receive and evaluate the motion of all axes for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However the existing cross coupled controllers cannot overcome friction, backlash and parameter variation. Also, since it is difficult to obtain an accurate mathematical model of multi axis system, here we investigate a fuzzy logic cross coupled controller method. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

An Adaptive Compensator for Robot Manipulator with Unknown Frictions (미지의 마찰력을 갖는 로봇 매니퓰레이터에 대한 적응보상기)

  • Yoo, Byung-Kook;Han, Jong-Kil;Yang, Keun-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.157-162
    • /
    • 2005
  • This paper presents an adaptive compensator using the fuzzy systems for robot manipulator with unknown frictions. In general, frictions are neglected or dynamic frictions are only considered in robot control theories. The proposed control method considers viscous frictions as well as dynamic frictions. Using the property that the frictions of joints are decoupled, SISO-fuzzy systems are utilized to approximate each friction. The stability of overall control system is proven and the adaptive laws are derived based on Lyapunov stability theorey. To verify the validity of the proposed control strategy, the results of computer simulations are shown for 2-link robot manipulator. The ability of approximating of the fuzzy system is also shown.

  • PDF

Estimating Influence of Biogenic Volatile Organic Compounds on High Ozone Concentrations over the Seoul Metropolitan Area during Two Episodes in 2004 and 2007 June (자연배출량이 수도권 고농도 오존 사례에 미치는 영향범위 추정: 2004년과 2007년 6월 사례를 중심으로)

  • Kim, Soon-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.751-771
    • /
    • 2011
  • Biogenic Volatile Organic Compound (BVOC) emissions are estimated with BEIS3.12 (Biogenic Emissions Inventory System version 3.12) over the Seoul Metropolitan Area (SMA) and then used in CMAQ (Community Multiscale Air Quality) simulations for two high ozone episodes in 2004 and 2007 June. The first- and second-order sensitivity coefficients of ozone to BVOC emissions are estimated with High-order Decoupled Direct Method (HDDM) simulation in order to estimate the influence of BVOC emissions on ozone using the Zero-Out Contribution (ZOC) approach. ZOC analysis shows that relative contribution of BVOC emissions on daily maximum 1-hr ozone is as high as 30% for high ozone days above 100 ppb. However simulated isoprene concentrations were over-estimated by a factor of 2 when compared to the observations at the PAMS (Photochemical Air Monitoring Station) for the 2007 episode. When assumed that actual BVOC emissions are 50% less than estimated, the ZOC of BVOC emissions on daily maximum ozone drops by more than 10 ppb for the episode. The result indicates that uncertainty in BVOC emissions may have significant impact on high ozone prediction in the SMA.

Design of an OPtimal Controller for the Nonlinear Robot Manipulators with the Actuator Dynamics (조작기의 동특성을 고려한 비선형 로봇 매니퓰레이터의 최적 제어기 설계)

  • 김학범;이양범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1376-1385
    • /
    • 1993
  • This paper presents a new dynamic model which is represented by the second order differenatial equation and itcludes the robot arm dynamics as well as the actuator dynamics. The model exhibits excellent performance in the steady state and transient response. In addition the time varing nonlinear and coupled dynamic system has been linearized and decoupled by using nonlinear feedback and linearization method. In this case a pole assignment law is used to improve stability, and the optimal control altorithm is applied to the error equation to minimize the path error. In applying the proposed algorithm to the three joint manipulator with actuators, we obtained very encouraging results.

  • PDF

Sliding Mode Trim and Attitude Control of a 2-00F Rigid-Rotor Helicopter Model

  • Jeong, Heon-Sul;Chang, Se-Myong;Park, Jin-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.23-32
    • /
    • 2005
  • An experimental control system is proposed for the attitude control of a simplified 2-DOF helicopter model. The main rotor is a rigid one, and the fuselage is simply supported by a fixed hinge point where the longitudinal motion is decoupled from the lateral one since the translations and the rolling rotation are completely removed. The yaw trim of the helicopter is performed with a tail rotor, by which the azimuthal attitude can be adjusted on the rotatable post in the yaw direction. The robust sliding mode control tracking a given attitude angle is proposed based on the flight dynamics. A pitch damper is inserted for the control of pitching angle while the compensator to reaction torque is used for the control of azimuth angle. Several parameters of the system are selected through experiments. The results shows that the proposed control method effectively counteracts nonlinear perturbations such as main rotor disturbance, undesirable chattering, and high frequency dynamics.

A Study on ADS-33E with Application to the Assessment of Handling Quality for Unmanned Rotorcraft (회전익 무인항공기의 비행안정성 규명을 위한ADS-33E 적용기법 연구)

  • Jeong, Hwan-Ho;Suk, Jin-Young;Kim, Byoung-Su;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.243-250
    • /
    • 2012
  • In this paper, a systematic consequence of evaluation method, procedure, and flight data analysis is investigated for application of ADS-33E-PRF to UAV. And it is applied to unmanned rotorcraft for evaluation. CNUHELI-020, which is developed in Chungnam National University, is used for assessment of handling quality: decoupled longitudinal and lateral/directional model were used to assess handling qualities. Evaluation flight maneuvers are categorized as hover/low-speed requirements, small-amplitude attitude change, and moderate-amplitude attitude change requirements.

A Study on High Efficiency Vector Controlled Induction Motor Drive System (고효율 벡터제어 유도전동식 구동 시트템에 관한 연구)

  • Kim, Heung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1174-1182
    • /
    • 1990
  • A hgih efficiency and good dynamic performance drive system of an induction motor is presented in this paper using vector control technique. If the induction motor is driven under light loads with rated flux, the iron loss is excessively large compared with the copper loss, resulting in poor motor efficiency. High efficiency drive of an induction motor can be achieved by adjusting the flux level which leads the total motor loss to be a minimum value. Generally reducing the flux degrades the dynamic performance, but the dynamic performance of the proposed system is also maintained high. If the d-axis is coincident with rotor flux phasor in synchronous rotating reference frame, the stator current can be decoupled as flux component and torque component. At steady state, the developed motor torque is proportional to the product of the flux and torque component. The combination of the two components minimizing the motor loss could be found with numerical method. As the procedure to obtain the optimal combination is too hard, it is found experimentally. The system block diagram is suggested for maximum efficiency control. The proposed system is studied through digital simulation and verified with experiment. The experimental results show the possiblity of a high efficiency drive with good dynamic performance of maximum efficiency control.

  • PDF

Input-Output Decoupling Control of Multivariable System with Robustness against Feedback Loop Failure (궤환회로 고장에 대해 강인성을 갖는 다변수 시스템의 비간섭 제어)

  • 김동화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.8
    • /
    • pp.805-815
    • /
    • 1992
  • In this paper, robust decoupling control scheme of miftivarlable systems Is studied. Design methods for Input-Output decoupling systems with robustness against signal failure In arbitrary feedback loop or actuator loop Is suggested based on the Riccati type matrix equation and state feedback, and is simulated In Turbo-Generator systems with B-Input, 2 output. The results of simulation represents the decoupled and stable response against the failure of signal In sensor or actuator loop. However, the system designed by conventional ,it ate feedback shows the unstable response. This method Is applied for robust decoupling control of the complicated multivariable systems.

  • PDF