• Title/Summary/Keyword: Decoupled Design

Search Result 111, Processing Time 0.026 seconds

Algebraic approach for unknown inputs observer via Haar function (Haar 함수를 이용한 대수적 미지입력관측기 설계)

  • Ahn, P.;Kang, K.W.;Kim, H.K.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2086-2088
    • /
    • 2002
  • This paper deals with an algebraic approach for unknown inputs observer by using Haar functions. In the algebraic UIO(unknown input observer) design procedure, coordinate transformation method is adopted to derive the reduced order dynamic system which is decoupled unknown inputs and Haar function and its integral operational matrix is applied to avoid additional differentiation of system outputs.

  • PDF

Design of Unknown Input Observer for Linear Time-delay Systems

  • Fu, Yan-Ming;Duan, Guang-Ren;Song, Shen-Min
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.530-535
    • /
    • 2004
  • This paper deals with the unknown input observer (UIO) design problem for a class of linear time-delay systems. A case in which the observer error can completely be decoupled from an unknown input is treated. Necessary and sufficient conditions for the existences of such observers are present. Based on Lyapunov stability theory, thedesign of the observer with internal delay is formulated in terms of linear matrix inequalities (LMI). The design of the observer without internal delay is turned into a stabilization problem in linear systems. Two design algorithms of UIO are proposed. The effect of the proposed approach is illustrated by two numerical examples.

Experimental and Numerical Approach foy Optimization of Tunnel Blast Design (터널 발파설계 최적화를 위한 실험 및 수치해석적 접근)

  • 이인모;김상균;권지웅;박봉기
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.75-85
    • /
    • 2003
  • Laboratory model blast and in-situ rock blast tests were conducted to determine blast-induced stress wave propagation characteristics under different explosive types, different loading conditions and different mediums. Dynamic numerical approaches were conducted under the same conditions as experimental tests. Stress magnitudes at mid-point between two blast holes which were detonated simultaneously increased up to two times those of single hole detonation. The rise time of maximum stress in a decoupled charge condition was delayed two times that of a fully charged condition. Dynamic numerical analysis showed almost similar results to blast test results, which verifies the effectiveness of numerical approaches fur optimizing the tunnel blast design. Dynamic numerical analysis was executed to evaluate rock behavior and damage of the contour hole, the sloping hole adjacent to the contour hole in the road tunnel blasting pattern. The rock damage zone of the sloping hole from the numerical analysis was larger than that of the contour hole. Damage in the sloping hole can be reduced by using lower density explosive, by applying decoupled charge, or by increasing distance between the sloping hole and the contour hole.

Design of a Nuclear Fuel Rod Support Grid Using Axiomatic Design (공리적 설계를 이용한 원자로 핵연료봉 지지격자체의 설계)

  • Song, Gi-Nam;Gang, Byeong-Su;Choe, Seong-Gyu;Yun, Gyeong-Ho;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1623-1630
    • /
    • 2002
  • Recently, much attention is imposed on the design of the fuel assemblies in the Pressurized Light Water Reactor (PWR). Spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water, and maintains a coolable geometry from the external impact loads. In this research, a new shape of the spacer grid is designed by the axiomatic approach. The Independence axiom is utilized for the design. For conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detail design is carried out based on the result of the axiomatic design. For the detail design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design.

Analysis and Design of a Motor Driven Tilt/Telescopic Steering Column for Safety Improvement (안전도를 고려한 전동 틸트/텔레스코픽 조향주의 해석 및 설계)

  • Sin, Mun-Gyun;Hong, Seong-U;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1479-1490
    • /
    • 2000
  • The design process of the motor driven tilt/telescopic steering column is established by axiomatic design approach in conceptual design stage. By selecting independent design variables for improvin g performance of the steering system, each detailed design can be carried out independently. In the detailed design, the safety in crash environment and vibration reduction are considered. An occupant analysis code SAFE(Safety Analysis For occupant crash Environment) is utilized to simulate the body block test. Segments, contact ellipsoids and spring-damper elements are used to model the steering column in SAFE. The model is verified by the result of the body block test. After the model is validated, the energy absorbing components are designed using an orthogonal array. Occupant analyses are performed for the cases of the orthogonal array. Final design is determined for the minimum occupant injury. For vibrational analysis, a finite element model of the steering column is defined for the modal analysis. The model is validated by the vibration experiment. Size and shape variables are selected for the optimization process. An optimization is conducted to minimize the weight subjected to various constraints.

A servo design method for MIMO Wiener systems with nonlinear uncertainty

  • Kim, Sang-Hoon;Kunimatsu, Sadaaki;Fujii, Takao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1960-1965
    • /
    • 2005
  • This paper presents theory for stability analysis and design of a servo system for a MIMO Wiener system with nonlinear uncertainty. The Wiener system consists of a linear time-invariant system(LTI) in cascade with a static nonlinear part ${\psi}$(y) at the output. We assume that the uncertain static nonlinear part is sector bounded and decoupled. In this research, we treat the static nonlinear part as multiplicative uncertainty by dividing the nonlinear part ${\psi}$(y) into ${\phi}$(y) := ${\psi}$(y)-y and y, and then we reduce this stabilizing problem to a Lur'e problem. As a result, we show that the servo system with no steady state error for step references can be constructed for the Wiener system.

  • PDF

Design of a Nuclear Fuel Rod Support Grid Using Axiomatic Design (공리적 설계를 이용한 원자로 핵연료봉 지지격자체의 설계)

  • Song, K.N.;Kang, B.S.;Choi, S.K.;Yoon, K.H.;Park, G.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.548-553
    • /
    • 2001
  • Recently, much attention is imposed on the design of the fuel assemblies in the Pressurized Light Water Reactor (PWR). Spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water and protects the system from the external impact loads. Various space grids have been proposed and new designs are also being created. In this research, a new spacer grid is designed by the axiomatic approach. The Independence Axiom is utilized for the design. For conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detail design is carried out based on the result of the axiomatic design. For the detail design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design.

  • PDF

Calculation of Information Contents in Axiomatic Design (공리적 설계에서 정보량 계산 방법)

  • Shin Gwang-Seob;Yi Jeong-Wook;Yi Sang-Il;Kwon Yong-Deok;Park Gyung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.183-191
    • /
    • 2005
  • Axiomatic design offers a scientific base for design in an efficient way. It is well known that it has two axioms: the Independence Axiom and the Information Axiom. Many applications of the Independence Axiom have been published, however, the Information Axiom has been mainly applied to IFR (functional requirement) - 1DP (design parameter) problems except fer a few case studies. This research presents various methods for calculation of information content. Generally, the information content is evaluated by the probability of success. The probability of success is calculated in two ranges: the FR range and the DP range. In the FR range, the graphical method is utilized with uniform distribution of the DP. In the FP range, the integration method is employed. It is noted that any distribution function of the DP can be accommodated in the integration method. The developed method can be applied to a decoupled design with multiple FRs and DPs. The developed method is extended to a coupled design and a design with a hierarchical structure of axiomatic design.

Development of Evaluation Method for Performance of Weapon System using Axiomatic Design based Inner Dependence AHP (공리적설계 기반의 내부종속 AHP를 이용한 국방무기 해외 구매사업의 무기성능 평가방법 개발)

  • Cho, Hyunki;Kim, Woo-Je
    • Korean Management Science Review
    • /
    • v.29 no.3
    • /
    • pp.45-65
    • /
    • 2012
  • Test and evaluation of weapon system is an important task to evaluate the performance of overseas weapon system purchasing project. Especially, quantitative evaluation of performances is hardly completed in defense projects where multiple criteria are conflicted each other. In order to solve this problem, we apply Axiomatic Design (AD) and Inner Dependence AHP method. First, finite functional requirements (FRs) are categorized in hierarchy structure by selecting proper design parameters (DPs) to implement their corresponding FRs. If there are no ways to select DPs when design is coupled between FRs and DPs, then inner dependence is allowed to overcome the strict rule of independence in AHP. Second, the weights of DPs are calculated by applying both Inner Dependence AHP method for coupled design and normal AHP method for uncoupled or decoupled design. Finally, information axiom of AD is applied to the proposed weapon systems by calculating information contents for all parameters. Weapon system with minimum sum of information contents is considered as the best solution. The proposed method in this study should be used in multiple criteria decision making problems involving various conflicting criteria.

Designing observer-based robust compensators for parametric uncertain systems by block-diagonal approach (분리 최적화 기법을 이용한 구조적 불확실계의 강인 제어기 설계)

  • 김경수;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.109-112
    • /
    • 1997
  • In this note, we investigate a noniterative design method of an observer-based robust H$\_$2/ controller in the presence of structured real parameter uncertainty by applying Riccati approach based on the guaranteed cost function. Motivated by the numerical difficulty of the problem, we try to develop a simple design method named as block-diagonal approach, which can be solved by the LMIs method. By assuming the block-diagonal structure of Riccati solution, the original problem can be derived into two sequentially decoupled optimization problems as LQG control problem. The proposed method seems to be numerically efficient in obtaining a feasible compensator.

  • PDF