• 제목/요약/키워드: Decoupled Control

검색결과 197건 처리시간 0.038초

An Indirect Decoupled Adaptive Fuzzy Sliding-Mode Control through width adaptation

  • Kim, Dowoo;Yang, Haiwon;Han, Hongsuck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.62.4-62
    • /
    • 2002
  • $\textbullet$ Contents 1. Introduction $\textbullet$ Contents 2. System Description $\textbullet$ Contents 3. Decoupled Sliding Mde Control $\textbullet$ Contents 4. Decoupled Adaptive Fuzzy Sliding Mode Control through width adaptation $\textbullet$ Contents 5. Simulation Result $\textbullet$ Contents 6. Conclusion

  • PDF

3단 비간섭 슬라이딩모드 제어 (Three-Level Decoupled Sliding Mode Control)

  • ;장성동;신화범
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권8호
    • /
    • pp.467-472
    • /
    • 2000
  • A three-level decoupled sliding mode controller is developed to achieve asymptotic stability for a class of sixth-order nonlinear systems. The sixth-order system is decoupled into three subsystems according to the structure of the whole system. Each subsystem has a separate control target in the form of a sliding surface. The information of the third sliding surface is transferred to the second one through an intermediate variable and the information of the second sliding surface is transferred to the first one through another intermediate variable. Consequently, the controller designed on the basis of the first sliding surface can make three subsystems move toward their sliding surfaces, respectively. The three-level decoupled sliding mode controller is applied to the double-inverted pendulum problem where the zero stable states are required.

  • PDF

분리된 비선형 시스템의 적응 퍼지 슬라이딩모드 제어 (An Adaptive Fuzzy Sliding-Mode Control for Decoupled Nonlinear Systems)

  • 김도우;양해원;윤지섭
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.719-727
    • /
    • 2002
  • We proposed a decoupled adaptive fuzzy sliding-mode control scheme for a class of fourth-order nonlinear systems. The system is decoupled into two second-order systems such that each subsystem has a separate control target expressed in terms of sliding surface. For these sliding surfaces, we define main and sub target conditions. and, we made intermediate variables which are interconnected both surface conditions from the sub target sliding surface. Then, Two sets of fuzzy rule bases are utilized to represent the equivalent control input with unknown system functions of the main target sliding surface including intermediate variables. The membership functions of the THEN-part, which is used to construct a suitable equivalent control of sliding-mode control, are changed according to the adaptive law. With such a design scheme, we not only maintain the distribution of membership functions over state space but also reduce the computing time considerably. We apply the decoupled adaptive sliding-mode control to a nonlinear Cart-Pole system and confirms the validity of the proposed approach.

로보트 팔의 최소시간 위치제어에 관한 연구 (A study on time optimal positioning control of robotic manipulator)

  • 김종찬;배준경;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.45-48
    • /
    • 1986
  • In this paper, time optimal positioning control of the robotic manipulator is discussed. The equations for dynamic model of the robotic manipulator are nonolinear, and each link is highly coupled. A feedback linearizing and decoupling transformation makes the dynamic model linearized and decoupled, and optimal control input for the linear and decoupled system is derived.

  • PDF

새로운 이산시간 가변구조 제어방법을 이용한 CNC의 고성능 제어 (High Performance CNC Control Using a New Discrete-Time Variable Structure Control Method)

  • 오승현;김정호;조동일
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1053-1060
    • /
    • 2000
  • In this paper, a discrete-time variable structure control method using recursively defined switching function and a decoupled variable structure disturbance compensator is used to achieve high performance circular motion control of a CNC machining center. The discrete-time variable structure control with the decoupled disturbance compensator method developed in this paper uses a recursive switching function defined as the sum of the current tracking error vector and the previous value of the switching function multiplied by a positive constant less than one. This recursive switching function provides much improved performance compared to the method that uses a switching function defined only as a linear combination of the current tracking error. Enhancements in tracking performance are demonstrated in the circular motion control using a CNC milling machine.

  • PDF

단순 차량 모델을 이용한 능동 현가장치 제어기 설계 (Design of an Active Suspension Controller with Simple Vehicle Models)

  • 임성진;정진화
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.177-185
    • /
    • 2016
  • This paper presents a method to design a controller for active suspension with 1-DOF decoupled models. Three 1-DOF decoupled models describing vertical, roll and pitch motions are used to design a controller in order to generate a vertical force, roll and pitch moments, respectively. These control inputs are converted into active suspension forces with geometric relationship. To design a controller, a sliding mode control is adopted. Frequency domain analysis and simulation on vehicle simulation software, CarSim$^{(R)}$, show that the proposed method is effective for ride comfort.

Decoupled Type의 초정밀 이중 서보의 제어에 관한 연구 (Control of Decoupled Type High Precision Dual-Servo)

  • 남병욱;김기현;최영만;김정재;이석원;권대갑
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.43-50
    • /
    • 2006
  • Recently, with rapid development of semiconductor and flat panel display, the manufacturing equipments are required to have large travel range, high productivity, and high accuracy. In this paper, an ultra precision decoupled dual servo (DDS) system is proposed to meet these requirements. And a control scheme for the DDS is studied. The proposed DDS consists of a $XY{\Theta}$ fine stage for handling work-pieces precisely and a XY coarse stage for large travel range. The fine stage consists of four voice coil motors (VCM) and air bearing guides. The coarse stage consists of linear motors and air bearing guides. The DDS is mechanically decoupled between coarse stage and fine stage. Therefore, both stages must be controlled independently and the performance of the DDS is mainly determined by the fine stage. For high performance tracking, the controller of fine stage consists of time delay control (TDC) and perturbation observer while the controller of coarse stage is TDC alone. With these individual controllers, two kinds of dual-servo control strategies are suggested: master-slave type and parallel type. By simulations and experiments, the performances of two dual-servo control strategies are compared.

2차원 천정크레인의 위치 및 이송물의 흔들림제어 (Position and load-swing control of a 2-dimensional overhead crane)

  • 이호훈;조성근
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1683-1693
    • /
    • 1997
  • In this paper, a new nonlinear dynamic model is derived for a 2-dimensional overhead crane based on a new definition of 2-degree-of-freedom swing angle, and a new anti-swing control law is proposed for the crane. The dynamic model and control law take simultaneous travel and traverse motions of the crane into consideration. The model is first linearized for small motions of the crane load about the vertical stable equilibrium. Then the model becomes decoupled and symmetric with respect to the travel and traverse axes of the crane. From this result, a decoupled anti-swing control law is proposed based on the linearized model via the loop shaping and root locus methods. This decoupled method guarantees not only fast damping of load-swing but also zero steady state position error with optimal transient response for the 2-dimensional motion of the crane. Finally, the proposed control method is evaluated by controlling the simultaneous travel and traverse motions of a 2-dimensional prototype overhead crane. The effectiveness of the proposed control method is then proven by the experimental results.

무선 네트워크에 적합한 Decoupled TCP (Decoupled TCP: TCP for Wireless Networks)

  • 강문수;모정훈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (3)
    • /
    • pp.175-177
    • /
    • 2004
  • 무선망에서의 TCP 성능은 않은 연구가 되어 왔지만 손실율이 큰 경우의 TCP의 성능은 아직도 개선의 여지가 많다. 본 논문은 두 가지 점에서 새로운 TCP를 제안한다. 첫째, 혼잡제어(Congestion Control)와 손실제어(Loss Recovery)가 분리(Decoupled)되었다. 기존의 연구들은 무선손실과 혼잡손실을 구분하여야 한다는 점에는 많은 연구를 해왔지만 무선 손실에 대하여 어떻게 대처할 것 인가에 관한 문제는 상대적으로 간과하였다. 둘째, 기종의 TCP-Westwood와 TCP-Jersey에서 사용되는 ABE(Available Bandwidth Estimation)가 무선네트워크에 의해 발생하는 패킷 손실로 인해 부정확해지는 것을 지적하고 새로운 ABE방법을 제시한다. 시뮬레이션을 통하여 우수한 성능을 보여주었다.

  • PDF

H2 Design of Decoupled Control Systems Based on Directional Interpolations

  • Park, Kiheon;Kim, Jin-Geol
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1551-1558
    • /
    • 2013
  • $H_2$ design of decoupled control systems is treated in the generalized plant model. The existence condition of a decoupling controller is stated and a parameterized form of all achievable decoupled closed loop transfer matrices is presented by using the directional interpolation approaches under the assumption of simple transmission zeros. The class of all decoupling controllers that yield finite cost function is obtained as a parameterized form and an illustrative example to find the optimal controller is provided.