• Title/Summary/Keyword: Decomposition reaction

Search Result 996, Processing Time 0.033 seconds

Characteristics of Pt/C-based Catalysts for HI Decomposition in SI process (SI 공정에서 HI 분해를 위한 백금담지 활성탄 촉매의 특성)

  • Kim, J.M.;Kim, Y.H.;Kang, K.S.;Kim, C.H.;Park, C.S.;Bae, K.K.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.199-208
    • /
    • 2008
  • HI decomposition was conducted using Pt/C-based catalysts with a fixed-bed reactor in the range of 573 K to 773 K. To examine the change of the characteristic properties of the catalysts, $N_2$ adsorption analyser, a X-ray diffractometer(XRD), and a scanning electron microscopy(SEM) were used before and after the HI decomposition reaction. the effect of Pt loading on HI decomposition was investigated by $CO_2$-TPD. HI conversion of all catalysts increased as decomposition temperature increased. The XRD analysis showed that the sizes of platinum particle became larger and agglomerated into a lump during the reaction. From $CO_2$-TPD, it can be concluded that the cause for the increase in catalytic activity may be attributed to the basic sites of catalyst surface. The results of both b desorption and gasification reaction showed the restriction on the use of Pt/C-based catalyst.

Decomposition of Trichloroethylene by Using a Non-Thermal Plasma Process Combined with Catalyst (저온 플라즈마·촉매 복합공정을 이용한 트리클로로에틸렌의 분해에 관한 연구)

  • Mok, Young-Sun;Nam, Chang-Mo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.269-275
    • /
    • 2003
  • A non-thermal plasma process combined with $Cr_2O_3/TiO_2$ catalyst was applied to the decomposition of trichloroethylene (TCE). A dielectric barrier discharge reactor operated with AC high voltage was used as the non-thermal plasma reactor. The effects of reaction temperature and input power on the decomposition of TCE and the formation of byproducts including HCl, $Cl_2$, CO, NO, $NO_2$ and $O_3$ were examined. At an identical input power, the increase in the reaction temperature from 373 K to 473 K decreased the decomposition of TCE in the plasma reactor. The presence of the catalyst downstream the plasma reactor not only enhanced the decomposition of TCE but also affected the distribution of byproducts, significantly. However, synergistic effect as a result of the combination of non-thermal plasma with catalyst was not observed, i.e., the TCE decomposition efficiency in this plasma-catalyst combination system was almost similar to the sum of those obtained with each process.

  • PDF

Ab Initio Study on the Thermal Decomposition of CH3CF2O Radical

  • Singh, Hari Ji;Mishra, Bhupesh Kumar;Gour, Nand Kishor
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2973-2978
    • /
    • 2009
  • The decomposition reaction mechanism of $CH_3CF_2O$ radical formed from hydroflurocarbon, $CH_3CHF_2$ (HFC-152a) in the atmosphere has been investigated using ab-initio quantum mechanical methods. The geometries of the reactant, products and transition states involved in the decomposition pathways have been optimized and characterized at DFT-B3LYP and MP2 levels of theories using 6-311++G(d,p) basis set. Calculations have been carried out to observe the effect of basis sets on the optimized geometries of species involved. Single point energy calculations have been performed at QCISD(T) and CCSD(T) level of theories. Out of the two prominent decomposition channels considered viz., C-C bond scission and F-elimination, C-C bond scission is found to be the dominant path involving a barrier height of 12.3 kcal/mol whereas the F-elimination path involves that of a 28.0 kcal/mol. Using transition-state theory, rate constant for the most dominant decomposition pathway viz., C-C bond scission is calculated at 298 K and found to be 1.3 ${\times}$ 10$^4s{-1}$. Transition states are searched on the potential energy surfaces involving both decomposition channels and each of the transition states are characterized. The existence of transition states on the corresponding potential energy surface are ascertained by performing Intrinsic Reaction Coordinate (IRC) calculation.

Decomposition Characteristics of Carbon Dioxide Using Magnetite and Inorganic Sludge (Magnetite와 무기성 슬러지의 이산화탄소 분해 특성)

  • Park, Joon-Seok;Jeon, Jea-Yeoul;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.344-352
    • /
    • 2010
  • Magnetite and inorganic sludge were mainly composed of $Fe_2O_4$ and $Fe_2O_3$, respectively. Initial specific surface areas of magnetite and inorganic sludge were 130 $m^2$/g and 31.7 $m^2$/g. $CO_2$ decomposition rate for inorganic sludge was increased with temperature. Maximum $CO_2$ decomposition rates were shown 89% for magnetite at $350^{\circ}C$ and 84% for inorganic sludge at $500^{\circ}C$. Specific surface area for magnetite was not varied significantly after $CO_2$ decomposition. However, specific surface area for inorganic sludge was greatly decreased from initial 130 $m^2$/g to approximately 50~60 $m^2$/g after reaction. Therefore, it was estimated that magnetite could be used for $CO_2$decomposition for a long time and inorganic sludge should be wasted after $CO_2$ decomposition reaction.

$SO_3$ Decomposition Catalysis in SI Cycle to to Produce Hydrogen (SI 원자력 수소생산을 위한 $SO_3$ 분해반응촉매에 관한 연구)

  • Kim, Tae-Ho;Shin, Chae-Ho;Joo, Oh-Shim;Jung, Kwang-Deog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2011
  • Fe, Ni and Co, typical active components, were dispersed on $Al_2O_3$ and $TiO_2$ for $SO_3$ decomposition. $SO_3$ decomposition was conducted at the temperature ranges from $750^{\circ}C$ to $950^{\circ}C$ using the prepared catalysts. Alumina based catalysts showed the surface areas higher than Titania based catalysts, which resulted from spinel structure formation of alumina based catalysts. Catalytic $SO_3$ decomposition reaction rates were in the order of Fe>Co${\gg}$Ni. The metal sulfate decomposition temperature were in the order of Ni>Co>Fe from TGA/DTA analysis of metal sulfate. During $SO_3$ decomposition, metal sulfate can form on the catalysts. $SO_2$ and $O_2$ can be produced from the decomposition of metal sulfate. In that point of view, the less is the metal sulfate deomposition temperature, the higher can be the $SO_3$ decomposition activity of the metal component. Therefore, it can be concluded that metal component with the low metal sulfate decomposition temperature is the pre-requisite condition of the catalysts for $SO_3$ decomposition reaction.

Non-isothermic Analysis of Reaction Rate for the Thermal Decomposition of Na2B4O7·10H2O (Na2B4O7·10H2O 열분해 반응속도의 비등온해석)

  • Choi, Ho-Sang;Park, Young-Tae;Lee, Soo-Kag
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1029-1033
    • /
    • 1997
  • Fundamental research of non-isothermic analysis of reaction rate has been carried out for the heat storage system using the thermal decomposition of $Na_2B_4O_7{\cdot}10H_2O$. It was found that the equilibrium temperature of the thermal decomposition reaction was lowered less than 373K in $Na_2B_4O_7{\cdot}10H_2O/Na_2B_4O_7{\cdot}5H_2O$ system, but the heat efficiency was unchanged. The initiation temperature of the reaction was varied from low to high temperature region with heating rate. The reaction order of the dehydration reaction by the thermal decomposition was appeared to be 0.67 by non-isothermic analysis, thereby $Na_2B_4O_7{\cdot}10H_2O$ may be used as a hemical heatstorage material.

  • PDF

Behaviors of Decomposition products and Electrical treeing in XLPE According to Drying condition (XLPE의 가열건조에 따른 분해잔사와 전기 Tree 특성)

  • 한기만;김동욱;김영성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.108-110
    • /
    • 1994
  • Decomposition products by crosslinking reaction of PE using Dicumylperoxide(DCP) should influence on the electrical properties in XLPE. This paper studies on Behaviors of Decomposition products and Electrical Treeing ding to Drying condition. We used the Gas Chromatography for Decomposition Gases analysis FT-IR for investigating the behaviors of Decomposition products remained in XLPE Break Down Voltage Tester for Electrical Treeing measurement.

  • PDF

A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas (고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구)

  • Lee, Han Min;Yun, Jae Geun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

Effects of Solubility of SO2 Gas on Continuous Bunsen Reaction using HIx Solution (HIx 용액을 이용한 연속식 분젠 반응에 미치는 SO2용해도의 영향)

  • KIM, JONGSEOK;PARK, CHUSIK;KANG, KYOUNGSOO;JEONG, SEONGUK;CHO, WON CHUL;KIM, YOUNG HO;BAE, KI KWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • The Sulfur-Iodine thermochemical hydrogen production process (SI process) consists of the Bunsen reaction section, the $H_2SO_4$ decomposition section, and the HI decomposition section. The $HI_x$ solution ($I_2-HI-H_2O$) could be recycled to Bunsen reaction section from the HI decomposition section in the operation of the integrated SI process. The phase separation characteristic of the Bunsen reaction using the $HI_x$ solution was similar to that of $I_2-H_2O-SO_2$ system. On the other hands, the amount of produced $H_2SO_4$ phase was small. To investigate the effects of $SO_2$ solubility on Bunsen reaction, the continuous Bunsen reaction was performed at variation of the amounts of $SO_2$ gas. Also, it was carried out to make sure of the effects of partial pressure of $SO_2$ in the condition of 3bar of $SO_2-O_2$ atmosphere. As the results, the characteristic of Bunsen reaction was improved with increasing the amounts and solubility of $SO_2$ gas. The concentration of Bunsen products was changed by reverse Bunsen reaction and evaporation of HI after 12 h.