• Title/Summary/Keyword: Decomposition of Odor

Search Result 40, Processing Time 0.036 seconds

Removal of Mixed Odor(H$_2$S/CH$_3$SH) using Char Adsorbent Made from Sewage Sludge (하수슬러지 탄화물 흡착제를 이용한 혼합 악취(H$_2$S/CH$_3$SH)의 제거)

  • Han, Young-Suk;Choi, Won-Joon;Kim, Taek-Joon;Kim, Im-Gyung;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1132-1138
    • /
    • 2008
  • The study was carried out to investigate adsorption characteristic on hydrogen sulfide (H$_2$S) and methylmercaptan (CH$_3$SH) odor gas using the char made by a thermal decomposition of sewage sludge. The fixed bed adsorption experiments of the optimum L/D ratio could be 1.0, and adsorption capacity and break point increased with the increase of temperature. A simultaneous adsorption characteristic of H$_2$S and CH$_3$SH increased in breakthrough time and adsorption capacity more than single adsorption experiment, and CH$_3$SH had higher effective diffusivities than H$_2$S in same condition. The adsorption capacity of CH$_3$SH increased with fast velocity. When it was compared the produced absorbent with commercial activated carbon, As to adsorbent amount, it was H$_2$S 77% and CH$_3$SH 80% of commercial activated carbon.

Reducing Ammonia Emissions and Enhancing Plant Growth through Co-application of Microbes and Methanol in Sewage Sludge Treatment (하수슬러지 처리에서 미생물과 메탄올 적용을 통한 암모니아 배출 감소 및 식물 성장 향상 연구)

  • Jin-Won Kim;Hee-Gun Yang;Hee-Jong Yang;Myeong-Seon Ryu;Gwang-Su Ha;Su-Ji Jeong;Soo-Young Lee;Ji-Won Seo;Do-Youn Jeong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.2
    • /
    • pp.13-24
    • /
    • 2023
  • Sewage sludge has been widely used as an organic fertilizer in agriculture. However, sewage sludge can cause serious malodor problems resulting from the decomposition of organic compounds in anaerobic conditions. The malodor of sewage sludge mainly occurs due to a low carbon to nitrogen ratio (C/N), high moisture, and low temperature, which are ideal conditions for ammonia emissions. Therefore, in this study, we investigated the reduction of the odor-causing ammonia nitrogen (NH3-N) in sewage sludge by co-application of microbes and methanol (MeOH). The physico-chemical properties of the municipal sewage sludge showed that the odor was mainly caused by a higher NH3-N content (2932.2 mg L-1). Supplementation with MeOH (20%) as a carbon source in the sewage sludge significantly reduced the NH3-N up to 34.2% by increasing C/N ratio. Furthermore, the sewage sludge was treated with the NH3-N reducing and plant growth promoting (PGP) bacteria Stenotrophomonas rhizophila SRCM 116907. The treatment with S. rhizophila SRCM 116907 significantly increased the seedling vigor index of Lolium perenne (10.3%) and Chrysanthemum burbankii (42.4%). The findings demonstrate that supplementing sewage sludge with methanol significantly reduces ammonia emissions, thereby mitigating malodor problems. Overall, the study highlights the potential of using a microbial and methanol approach to improve the quality of sewage sludge as an organic fertilizer and promote sustainable agriculture.

Effect of Corynebacterium glutamicum and Bacillus licheniformis on livestock material burial treatment (매몰된 가축 사체의 부패 촉진 및 토양 비옥화를 위한 Corynebacterium glutamicum과 Bacillus licheniformis 처리 효과)

  • Shin, You-Jeong;Heo, Geon-Young;Kim, Ju-Hyung;Kim, Bit-Na;Min, Jiho;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.1
    • /
    • pp.53-59
    • /
    • 2017
  • Foot and mouth disease (FMD) is highly infectious disease of cloven-hoofed animals, particularly problematic in cattle, sheep, pigs and goats for economic reasons. Last FMD outbreak in February, 2017 caused tremendous social and economical impacts. The Korean FMD policy aims to vaccinate intact animals and euthanize and bury infected animals to prevent the disease spread. However, there was a problem that the buried livestock did not decompose after several years. Therefore, the study was purposed to investigate the effect of Corynebacterium glutamicum and Bacillus licheniformis on the degradation of buried cow carcasses and on the soil condition; such as temperature, decomposition course of carcasses, composition of amino acids in the soil around carcasses, and plant root elongation to measure soil conditions. As a result, the composition of amino acids in the soil treated with C. glutamicum and B. licheniformis was generally higher than those in the untreated soil. Plant roots in soil treated with C. glutamicum and B. licheniformis grew longer than in non-treated soil. The results suggested that the toxic effect on a grave land buried with FMD infected livestock is reduced when treated with C. glutamicum and B. licheniformis in regard of odor reduction, promoted decaying process, and soil fertilization.

A Study on the Lime Stabilization of Livestock Waste (축산폐기물의 안정화 처리에 대한 연구)

  • Kim, Hyun-Chul;Choi, Yong-Su
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.91-99
    • /
    • 1995
  • One of alternative conventional technologies used for treatment of livestock wastes is composting process, and recently some mechanical composting processes are being practiced. It is, however, recognized the composting process also has its own limitations such as longer time requirement, and difficulties to estimate the degree of decomposition, etc. The incomplete compost contains potentially harmful materials to crops and public health due to instabilized organic contents and pathogenic organisms. The purpose of this investigation is to develop an innovative system whereby anxious livestock wastes are thoroughly stabilized and disinfected. Thus the overall management scheme should meet the following requirements. 1. A system should be in a cost-effective and environmentally sound manner. 2. Sludges must be chemically stabilized and bacteriologically safe. 3. Odor-free by product should be applied to crop land. 4. Sludges are sources of fertilizer nutrients and/or soil amendments to enhance crop production. 5. And they can be used as potential pH adjusting agent of the acidified soils. Overall effectiveness of the developed system is experimentally tested to satisfy the preset criteria and requirements. Major experiments are divided into four categories: they are 1. chemical stability test, 2. optimal condition test of stabilization process, 3. bacteriological examination and disinfection tests, and 4. deodorization tests The stabilization process is consisted of the stabilizing reaction process and the drying process. Stabilized wastes is dried by both sun dryer and rotary dryer. It is shown that an additive dosage of about g/kg solid in wastes with a minimum of 5-minutes reaction would be necessary for effective stabilization reaction. The stabilization process is consisted of the stabilizing reaction process and drying process. Stabilized wastes are dried by both sun dryer and rotary dryer. It is shown that an additive dosage of about 300g/kg solid in wastes with a minimum of 5-minutes reaction would be necessary for effective stabilization reaction. In the stabilization reaction process, the pH of wastes is lowered from initial values of 12.3 to 8.6. High pH prevents odor production and kills pathogenic organisms. Organic matter contents in the stabilized wastes are about 50% and the sum of contents of fertilizer elements such as total nitrogen, $P_2O_5$ and $K_2O$ are about 5.3%. The livestock wastes that are stabilized chemically and hygienically can be used as a good soil conditioner and/or organic fertilizer.

  • PDF

Study on Ammonia Emission Characteristic of Pig Slurry (양돈 슬러리의 암모니아 발생 특성에 관한 연구)

  • Lee S.H.;Yun N.K.;Lee K.W.;Lee I.B.;Kim T.I.;Chang J.T.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • Ammonia emission from swine production process originates from three major sources: manure storage facility, swine housing, and land application of manure. Most of the ammonia gas that are emitted from swine production operations is the by-product of aerobic or anaerobic decomposition of swine waste by microorganism. Knowing the ammonia emission rate is necessary to understand how management practices or alternative manure handling process could reduce impacts of this emission on the environment and neighbors. Ammonia gas emission from pig slurry is very difficult to predict because it is affected by many factors including wind speed of slurry surface, temperature or pH of the swine slurry, sort breed differences and classes, and diets. This study was carried out to effects of pH and temperature on ammonia gas emission from growing-finishing pig slurry. Treated far slurry in this study were pH and temperature. Results showed that pH of slurry variable changes 5, 6, 7, 8 upon an addition of NaOH and $HNO_3$, respectively. The temperature of the slurry which was contained in a water bath maintained at increasing levels ranging from 10 to $35^{\circ}C$. Ammonia emission rate of influenced pH and temperature such that the increase in pH or temperature resulted to an increase in ammonia emission. The ammonia gas was not detected at pH 5 and 6. Moreover, at a slurry of pH 8, the ammonia ranged from 28 to 60ppm and 8-29 ppm at slurry pH of 7 while temperature was 13 to $33^{\circ}C$. When slurry pH was>6, the ammonia emission was significantly increased according to rise in temperature in contrast to acid treatment of the pH. There was also a significantly increase in ammonia emission relative to slurry pH of 7 to 8. The above findings showed that to effectively reduce ammonia emission from slurry of growing-finishing pigs, the pH and temperature should be maintained a low levels.

  • PDF

The Manufacture of Absorbents and Removal Characteristics of VOCs by Essential Oil and Photocatalyst (식물정유와 광촉매를 이용한 흡수제 제조 및 VOCs 제거특성에 관한 연구)

  • Jeong, Hae-Eun;Yang, Kyeong-Soon;Kang, Min-Kyoung;Cho, Joon-Hyung;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.54-63
    • /
    • 2017
  • Volatile organic compounds (VOCs) are widely used in both industrial and domestic activities. VOCs are one of the most unpleasant, frequently complaint-rousing factors of pollution around the world. It is now necessary to research and develop an alternative technology that could overcome the problems of the existing odor-control and VOC-eliminating techniques. In this study, essential oil and photocatalytic process was applied in the removal of benzene and toluene, typical VOCs in petrochemistry plant. therefore, this study conducted experiments on the selection of appropriate essential oil, photodegradation, hydroxyl radical generation capacity. The removal efficiency and reaction rate were performed to selecte the type and concentration of essential oil. As a result, removal efficiency of Hinoki Cypress oil was approximately 70% and reaction rate of Hinoki Cypress was high. The results of photolysis experiment, photocatalytic oxidation process showed that the decomposition efficiency of VOCs increased considerably with increasing UV lamp power. In addition, the conversion of VOCs was increased up to $0.1gL^{-1}$ photocatalysts. The hydroxyl radicals measure was performed to determine the ability to generate hydroxyl radicals. The analytical result showed that high $TiO_2$ concentration and lamp power was produced many hydroxyl radical. Experiments of the removal efficiency and reaction rate were performed using essential oil and photooxidation. As a result, the removal efficiency showed that the removal efficiency was increased high temperature and reaction time. The activation energy was calculated from the reaction rate equation at various temperature condition. Activation energy was approximately $18kJmol^{-1}$.

Development of Conditioning for Small Red Muscle Fish Using Kimchi Seasoning Ingredients and Organic acids 2. Sensory Evaluation in Conditioned Saury with Kimchi Seasoning and organic acids (김치양념과 유기산을 이용한 소형 적색육어 조미숙성제품 개발 2. 꽁치 조미숙성제품의 관능적 품질평가)

  • LIM Yeong-Seon;JEONG In-Hak
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.315-319
    • /
    • 2001
  • In odor to improve preference to small red muscle fish such as saury, sardine, herring, etc., a new seasoning and conditioning process was experimented using kimchi seasoning ingredients and organic acids. The sensory profiles during 60 days of conditioning at $5^{\circ}C$ showed better results in dry salting than in wet salting. The additions of rice bran in dry salting gave advantageous effect on the sensory evaluation of conditioned saury with kimchi seasoning. The counts of remained fine bones and hardness of backbones after 60 days of conditioning were about $50\%\;and\;23\%$ in wet salted product, and $38\sim41\%$ and $11\sim14\%$ in dry salted product respectively, as compared to raw saury, The decomposition of protein to amino acids was more severe in wet salted product than in dry salted product. Histidine, leucine, glutamic acid, alanine, and valine in order were abundant in wet salted product, but histidine, glutamic acid, arginine, leucine, and alanine in order were contained plentifully in dry salted product.

  • PDF

Investigations on Conditions Required for Decomposition and Disinfection of infected Poultry under Different Fermentation Systems (발효방법에 의한 감염가금의 분해 및 발효소독 특성에 관한 연구)

  • Hong, J.T.;Yu, B.K.;Kim, H.J.;Lee, S.H.;Park, K.S.;Oh, K.Y.;Kim, D.G.;Lee, J.J.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • Recently, the treatment of dead poultry has become more important issue because, the infected poultry, which was buried under the ground, causes environmental contaminations such as steep water and reek occurrence, etc. Therefore, in this study, we investigated the type of treatment and the composting methods influencing to the characteristics on decomposition and fermentative disinfection of dead poultry with poultry manure and sawdust. The results of the port tests showed that amputated poultry treated by the cut-sterilization were not only more decomposed, with less smell compared to the non-treated poultry carcass. When we treated thermophilic microorganism such as bacillus in this amputated poultry, the temperature of treated poultry increased much fester, the fermentation temperature didn't rise and not maintained constantly for long time due to the small size of the fermentation port. On the other hand, we did fermentation test by the layered disposal method with more poultry. In this experiment, the temperature of fermented poultry rose to $54^{\circ}C$ in a day and maintained around $55^{\circ}C$ during four weeks period. With less odor outside the experiment room. further. Also, we inoculated AI virus, ND virus in the excrement for studying the effect of fermentative disinfection. The result of the test revealed that AI virus was destructed within 60 minutes and ND virus was destructed within 30 minutes at the temperature of $56^{\circ}C$. Therefore, the investigations revealed scope of composting method for steam sterilized infected poultry in the originated area mixed with poultry manure, sawdust by thermophilic microorganism could increase the effectiveness of fermentative disinfection and decrease the environmental contamination.

Changes in Characteristics of Bark and Piggery Manure By-Product Fertilizers During the Composting (수피${\cdot}$돈분 부산물 비료의 부숙단계별 특성 변화)

  • Yang, Jae-E;Park, Chang-Jin;Yong, Seok-Ho;Kim, Jeong-Je
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.372-377
    • /
    • 1999
  • Objective of this research was to draw the basic criteria of the compost maturity evaluation, by assessing the stability of chemical and physical properties of the bark and piggery manure byproduct composts during the composting. Colors of the mature composts were black and dark brown for the bark and piggery manure by-product composts, respectively. Good earthy odor was detected for both by-product composts after approximately 40 days composting, by which odors of the original raw materials were disappeared. pH and EC of the mature bark: compost were stabilized at 6.5 and 1dS/m, respectively. The respective values for the piggery compost were stabilized at 7.2 and 6dS/m. Organic matter contents were decreased with time to be stabilized at about 60% at the end of composting. During composting, total N contents of the bark and piggery composts were maintained at $1.1{\sim}1.5%$, and $1.5{\sim}2.2%$, respectively. For both fertilizers, $NH_4-N$ contents were increased at the initial stage bur. decreased after the middle stages of decomposition, resulting in the increase of $NO_3-N$ contents. Total inorganic N contents were increased with time. C/N ratios of both mature composts were stabilized at $25{\sim}27$. CEC of the bark compost was increased logarithmically with time and that of mature compost was 87cmol(+)/㎏. CEC of the piggery manure compost was hyperbolic function with rime and reached at 70cmol(+)/㎏ at the mature stage. Crude fiber analysis indicated that relative contents of lignin were increased with composting by compensating for the decreases of cellulose and hemicellulose contents.

  • PDF

Physicochemical Changes in Olive Flounder (Paralichthys olivaceus) Muscle by Iced Water Pre-treatment (얼음물 전처리 방법이 넙치육의 품질특성에 미치는 영향)

  • Shin, Seung-Ho;Sung, Ki-Hyub;Chung, Chang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.700-707
    • /
    • 2013
  • The purpose of this study was to monitor physicochemical changes of olive flounder (Paralichthys olivaceus) muscle by iced water pre-treatment. Moisture content, crude fat content, nucleotide content, texture (hardness and toughness), and rigor mortis were assessed. The sensory evaluation was performed with a nine-point hedonic test. K-values, a parameter of fish flesh freshness, were also calculated from the content of nucleotides and their corresponding decomposition products. Pre-treatment of flounder flesh with iced water was found to be fresher compared to the control, as determined by a difference in the K-values. Iced water pre-treatment hastened postmortem stiffness, as judged from the rigor index, and increased inosine monophosphate (IMP), which is known to be a savory taste compound, more quickly as adenosine triphosphate (ATP) degradation proceeded.