• Title/Summary/Keyword: Decomposition of Efficiency

Search Result 669, Processing Time 0.029 seconds

Effects of Phyto-Extract Mixture on the Nicotine Decomposition (식물추출혼합물의 니코틴 분해능에 미치는 효과)

  • 정종문;김지훈;이동희;조희재
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • Cotinine, one of nicotine metabolites, has been blown to reduce 4-(methylnitro samino)-1-(3-pyridyl)-1-butanone(NNK)- induced $O^{6}$MeG DNA adducts significantly in A/J mice when administered together with NNK. In order to examine the effects of phyto-extract mixture on the conversion of cotinine from nicotine, cellular and clinical experiments were carried out. When the phyto-extract mixture was added to culture media, human liver cells (FLCFR5) produced cotinine from nicotine 2~3 times compared to the control. The phyto-extract mixture which was microinjected into Xenopus oocyte along with nicotine showed the almost similar production of cotinine compared with the results of hepatic cell culture. In clinical test employing 17 to 20 healthy men, concentrations of urinary cotinine derived from smoking after taking photo-extract mixture increased up to 2 times compared to the control group. These results indicatethat the phyto-extract mixture can increase the metabolic efficiency of nicotine to cotinine, leading to the reduced formation of $O^{6}$MeG DNA adducts.

Development of Solvent System for Enzymatic Synthesis of N-Benzoylaspartame (N-Benzoylaspartame의 효소적 합성을 위한 용매계의 선정)

  • Han, Min-Su;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.504-510
    • /
    • 1992
  • Several single or mixed water-miscible organic solvent systems were investigated to develop the most effective solvent system for enzymatic synthesis of N-benzoylaspartame(BzAPM). The BzAPM was prepared by immobilized thermolysin with using N-benzoyl-L-aspartic acid(Bz-Asp) and L-phenylalanine methyl ester(PheOMe). The solubilities of BzAPM and L-phenylalanine were highest in 4.5% methanol(1.89 and 1.79%, respectively) among the solvents system investigated while a mixed solvent system of 25% dimethyl sulfoxide(DMSO) and 20% polyethylene glycol(PEG) 200 showed relatively high values. The synthetic activity of BzAPM as well as initial reaction rate were found to be high in 45% methanol, 45% DMSO and a mixed solvent of 25% DMSO and 20% PEM 200. The imobilized thermolysin was most stable in 25% DMSO and 20% PEG 200 during storage at $40^{\circ}C$ for 42 days. PheOMe in the same solvent system was also found fairly stable against non-enzymatic decomposition at $40^{\circ}C$. Based on the synthetic efficiency and stability, the solvent system containing 25% DMSO and 20% PEG 200 was selected to be appropriate for the enzymatic synthesis of BzAPM.

  • PDF

Organic-inorganic Nanocomposite Adhesive with Improved Barrier Property to Water Vapor for Backsheets of Photovoltaic Modules (태양광모듈용 저가형 백시트 제조를 위한 고수분차단성 유무기 나노복합형 접착제)

  • Hwang, Jin Pyo;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.530-537
    • /
    • 2015
  • Photovoltaic (PV) modules are environmentally energy conversion devices to generate electricity via photovoltaic effect of semiconductors from solar energy. One of key elements in PV modules is "Backsheet," a multilayered barrier film, which determines their lifetime and energy conversion efficiency. The representative Backsheet is composed of chemically resistant poly(vinyl fluoride) (PVF) and cheap poly(ethylene terephthalate) (PET) films used as core and skin materials, respectively. PVF film is too expensive to satisfy the market requirements to Backsheet materials with production cost as low as possible. The promising alternatives to PVF-based Backsheet are hydrocarbon Backsheets employing semi-crystalline PET films instead of PVF film. It is, however, necessary to provide improved barrier property to water vapor to the PET films, since PET films are suffering from hydrolytic decomposition. In this study, a polyurethane adhesive with reduced water vapor permeation behavior is developed via a homogeneous distribution of hydrophobic silica nanoparticles. The modified adhesive is expected to retard the hydrolysis of PET films located in the core and inner skin. To clarify the efficacy of the proposed concept, the mechanical properties and electrochemical PV performances of the Backsheet are compared with those of a Backsheet employing the polyurethane adhesive without the silica nanoparticles, after the exposure under standard temperature and humidity conditions.

A Study on the Underwater Channel Model based on a High-Order Finite Difference Method using GPUs (그래픽 프로세서를 이용한 고차 유한 차분식 기반 수중채널모델 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Son, Su-Uk;Ha, Wansoo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • As unmanned underwater systems have recently emerged, a high-speed underwater channel modeling technique, which is one of the most important techniques in the system, has received a lot of attention. In this paper, we proposed a high-speed sound propagation model and verified the applicability through quantitative performance analyses. We used a high-order finite difference method (FDM) for wave propagation modeling in the water, and a domain decomposition method was adopted using multiple general-purpose graphics processing units (GPUs) to increase the calculation efficiency. We compared the results of the model we proposed with the analytic solution in the half-infinite media and results of the Virtual Timeseries Experiment (VirTEX) model, which is based on the ray method. Finally, we analyzed the performance of the model quantitatively using numerical examples. Through quantitative analyses of the improvement in computational performance, we confirmed that the computational speed increases linearly as the number of GPUs increases. The computation times are increased by 2 times and 8 times, respectively, when the domain size of computation and the maximum frequency are doubled. We expect that the proposed high-speed underwater channel modeling technique is able to contribute to the enhancement of national defense as an underwater communication channel model and analysis tool to develop the underwater communication technique for the unmanned underwater system.

Degradation of Antibiotics Using Silver Decorated Heterojunction Carbon Nitride under Visible Light (은 장식 이종접합 질화탄소를 이용한 가시광선 조건에서의 항생제 분해 연구)

  • Taeyoon, Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.3
    • /
    • pp.23-27
    • /
    • 2023
  • Graphitic carbon nitride (g-C3N4) has been used as effective photocatalyst for degradation of antibiotics under visible light irradiation. However, the fast recombination of hole-electron pair may limit their photocatalytic efficiency. In our study, Ag was grafted on g-C3N4/g-C3N4 isotype heterojunction by a microwave-assisted decomposition method. The structure and physical properties of heterojunction photocatalyst were characterized through X-ray diffraction, UV-DRS, FT-IR, and Photoluminescence analyses. Ag decorated g-C3N4/g-C3N4 isotype heterojunction exhibited excellent photocatalytic activity for degradation of sulfamethoxazole under irradiation under visible light irradiation within 210 min, which is higher than g-C3N4/g-C3N4 isotype heterojunction and bulk g-C3N4. The addition of Ag may broaden the visible light absorption and restrict the recombination of hole-electron pair because of the surface plasmons resonance, resulting in the improving the photocatalytic activity.

MPI-OpenMP Hybrid Parallelization for Multibody Peridynamic Simulations (다물체 페리다이나믹 해석을 위한 MPI-OpenMP 혼합 병렬화)

  • Lee, Seungwoo;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.171-178
    • /
    • 2020
  • In this study, we develop MPI-OpenMP hybrid parallelization for multibody peridynamic simulations. Peridynamics is suitable for analyzing complicated dynamic fractures and various discontinuities. However, compared with a conventional finite element method, nonlocal interactions in peridynamics cost more time and memory. In multibody peridynamic analysis, the costs increase due to the additional interactions that occur when computing the nonlocal contact and ghost interlayer models between adjacent bodies. The costs become excessive when further refinement and smaller time steps are required in cases of high-velocity impact fracturing or similar instances. Thus, high computational efficiency and performance can be achieved by parallelization and optimization of multibody peridynamic simulations. The analytical code is developed using an Intel Fortran MPI compiler and OpenMP in NURION of the KISTI HPC center and parallelized through MPI-OpenMP hybrid parallelization. Further parallelization is conducted by hybridizing with OpenMP threads in each MPI process. We also try to minimize communication operations by model-based decomposition of MPI processes. The numerical results for the impact fracturing of multiple bodies show that the computing performance improves significantly with MPI-OpenMP hybrid parallelization.

Preparation and Characterization of Porous Catalyst for Formaldehyde Removal using Domestic Low-grade Silica (국내산 저품위 실리카를 이용한 포름알데히드 제거용 다공성 촉매의 제조 및 특성)

  • Han, Yosep;Jeon, Ho-Seok;Kim, Seongmin
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2021
  • This study investigated formaldehyde (HCHO) removal by preparing porous supports using domestic low-grade silica coated with Co-ZSM5 and Cu-ZSM5 as the catalysts. First, the sample of the raw material for the support contained 90% silica with quartz crystal phase, which was confirmed as low-grade silica. According to Energy-dispersive X-ray spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FT-IR) analyses, the catalysts, Co-ZSM5 and Cu-ZSM5, were successfully coated on the surface of the porous silica supports. During the removal test of HCHO using the prepared Co-ZSM5 and Cu-ZSM5 coated beads, depending on the reaction temperature, the Co-ZSM5 coated beads exhibited higher removal efficiencies (>97%) than the Cu-ZSM5 beads at 200 ℃. The higher efficiency of the Co-ZSM5 coating may be attributed to its superior surface activity properties (BET surface area and pore volume) that lead to the favorable HCHO decomposition. Therefore, Co-ZSM5 was determined to be the suitable catalyst for removing HCHO as a coating on a porous support fabricated using domestic low-grade silica.

The Effects of Diet-Gel and Electric Muscle Stimulator on Waist Circumference Reduction (다이어트젤과 전기근육자극기가 허리둘레 감소에 미치는 영향)

  • Lee, Gwang-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.453-464
    • /
    • 2021
  • Abdominal obesity is increasing due to a decrease in physical activity and westernization of diet in busy daily life. Therefore, in order to satisfy the desire for body shape management, a management program with high efficiency versus time is needed. In this study, the diet-gel (i.e., slimming cosmetics) with the electrical muscle stimulation therapy was used to promote the effect of reducing waist circumference and body fat mass (or abdominal fat). For men and women in their twenties, the subjects simply applied diet-gel to their waist, wore EMS, and massaged for 20 minutes twice a day after waking up and before going to sleep. The experiment period was carried out for 2 weeks. The reduction of subcutaneous fat was observed using non-contrast CT, and it was confirmed by measuring waist circumference and body fat mass. In conclusion, the developed EMS and diet-gel combination program showed excellent waist management effects by reducing waist circumference by about 3 cm (p<0.001) and body fat mass by about 1 kg (p<0.01). This result suggests that the use of EMS shows a massage effect by muscle stimulation, and plays a role in promoting fat decomposition by helping the absorption of diet gel.

Uranyl Peroxide Compound Preparation from the Filtrate for Nuclear Fuel Powder Production Process (핵연료분말 제조공정 여액으로부터 Uranyl-peroxide 화합물의 제조)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyun;Park, Jin-Ho;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.430-437
    • /
    • 1997
  • Uranyl-peroxide compound was prepared by the reaction of excess hydrogen peroxide solution and trace uranium in filtrate from nuclear fuel conversion plant. The $CO_3{^{2-}}$ in filtrate was removed first by heating more than $98^{\circ}C$, because uranyl-peroxide compound could not be precipitated by $CO_3{^{2-}}$ remaining in filtrate. The optimum condition for uranyl-peroxide compound was ageing for 1 hr after controling the pH with $NH_3$ gas and adding the excess $H_2O_2$ of 10ml/lit.-filtrate. Uranium concentration in the filtrate was appeared to 3 ppm after the precipitation of uranyl-peroxide compound, and the chemical composition of this compound was analyzed to $UO_4{\cdot}2NH_4F$ with FT-IR, X-ray diffractometry, TG and chemical analysis. Also, this fine particle, about $1{\sim}2{\mu}m$, could be grown up to $4{\mu}m$ at pH 9.5 and $60^{\circ}C$. The separation efficiency of precipitate from mother liquor was increased with increase of pH and reaction temperature. Otherwise, the crystal form of this particle showed octahedral by SEM and XRD, and $U_3O_8$ powder was obtained by thermal decomposition at $650^{\circ}C$ in air atmosphere.

  • PDF

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Results of the Precision Monitoring (바이오가스 이용 기술지침 마련을 위한 연구(II) - 정밀모니터링 결과 중심으로)

  • Moon, HeeSung;Bae, Jisu;Park, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.65-78
    • /
    • 2018
  • According to the in social aspects such as population growth, urbanization and industrialization, development of livestock industry by meat consumption, amount of organic wastes (containing sewage sludge and food waste, animal manure, etc) has been increased annually in South Korea. Precise monitoring of 11 organic wastes biogas facilities were conducted. The organic decomposition rate of organic wastewater was 68.2 % for food wastes, 66.8 % for animal manure and 46.2 % for sewage sludge and 58.8 % for total organic wastes. As a result of analyzing the biogas characteristics before and after the pretreatment, the total average of the whole facility was measured to be 560 ppm using iron salts and desulfurization, and decreased to 40 ppm when the reduction efficiency was above 90 %. Particularly, when iron salt is injected into the digester, the treatment efficiency is about 93 %, and the average is reduced to 150 ppm. In the case of dehumidification, the absolute humidity and the relative humidity were analyzed. The dew point temperature of the facility where the dehumidification facility was well maintained as $14^{\circ}C$, the absolute humidity was $12.6g/m^3$, and the relative humidity was 35 %. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure) through precision monitoring.