Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.530

Organic-inorganic Nanocomposite Adhesive with Improved Barrier Property to Water Vapor for Backsheets of Photovoltaic Modules  

Hwang, Jin Pyo (Energy Engineering Department, Dankook University)
Lee, Chang Hyun (Energy Engineering Department, Dankook University)
Publication Information
Membrane Journal / v.25, no.6, 2015 , pp. 530-537 More about this Journal
Abstract
Photovoltaic (PV) modules are environmentally energy conversion devices to generate electricity via photovoltaic effect of semiconductors from solar energy. One of key elements in PV modules is "Backsheet," a multilayered barrier film, which determines their lifetime and energy conversion efficiency. The representative Backsheet is composed of chemically resistant poly(vinyl fluoride) (PVF) and cheap poly(ethylene terephthalate) (PET) films used as core and skin materials, respectively. PVF film is too expensive to satisfy the market requirements to Backsheet materials with production cost as low as possible. The promising alternatives to PVF-based Backsheet are hydrocarbon Backsheets employing semi-crystalline PET films instead of PVF film. It is, however, necessary to provide improved barrier property to water vapor to the PET films, since PET films are suffering from hydrolytic decomposition. In this study, a polyurethane adhesive with reduced water vapor permeation behavior is developed via a homogeneous distribution of hydrophobic silica nanoparticles. The modified adhesive is expected to retard the hydrolysis of PET films located in the core and inner skin. To clarify the efficacy of the proposed concept, the mechanical properties and electrochemical PV performances of the Backsheet are compared with those of a Backsheet employing the polyurethane adhesive without the silica nanoparticles, after the exposure under standard temperature and humidity conditions.
Keywords
Photovoltaic modules; Backsheet; Adhesive; PET; Hydrophobic silica;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 M. J. Choi, C. H. Shin, T. U. Kang, J. K. Koo, and N. J. Cho, "A Study on the organic/inorganic composite electrolyte membranes for dye sensitized solar cell", Membr. J., 18, 345 (2008).
2 S. J. Byun, J. A. Seo, W. S. Chi, Y. G. Shul, and J. H. Kim, "Synthesis of porous $TiO_2$ thin films using PVC-g-PSSA graft copolymer and their use in dye-sensitized solar cells", Membr. J., 21, 193 (2011).
3 J. H. Lee, "Current status and future prospects of solar cells", Journal of the Korean Society for Precision Engineering, 25, 7 (2008).
4 F. Pern, "Ethylene-vinyl acetate (EVA) encapsulants for photovoltaic modules: Degradation and discoloration mechanisms and formulation modifications for improved photostability", Die Angewandte Makromolekulare Chemie, 252, 195 (1997).   DOI
5 W. Gambogi, Y. Heta, K. Hashimoto, J. Kopchick, T. Felder, S. MacMaster, A. P. Bradley, B. Hamzavytehrany, L. Garreau-Iles, and T. Aoki, "A comparison of key PV backsheet and module performance from fielded module exposures and accelerated tests", IEEE J. Photovoltaics., 4, 935 (2014).   DOI
6 J. E. Mark, "Polymer data handbook", pp. 558-560 and pp. 940-944, Oxford university press, New York, NY (2009).
7 http://www.dupont.co.kr/products-and-services/solarphotovoltaic-materials/articles/protect-moduleswith-tedlar-backsheet-film.html
8 C. Peike, P. Hulsmann, M. Bluml, P. Schmid, K.-A. Weiss, and M. Kohl, "Impact of permeation properties and backsheet-encapsulant interactions on the reliability of PV modules", ISRN Renewable Energy, DOI:10.5402/2012/459731.   DOI
9 N. S. Kim, H. W. Kang, K. J. Hwang, C. W. Han, W. S. Hong, D. J. Kim, E. J. Lyu, and H. Kim, "Study on the degradation of different types of backsheets used in PV module under accelerated conditions", Sol. Energy. Mater. Sol. Cells., 120, 543 (2014).   DOI
10 B. M. Kim, K. S. Lee, M. K. Kim, G. H. Kang, H. K. Lee, and M. J. Park, "A study on manufacturing process of PV module according to Back sheet type", J. Korean. Sol. Energ. Soc., 30, 389 (2010).
11 M. Y. Abdelaal, T. R. Sobahi, and M. S. Makki, "Chemical degradation of poly (ethylene terephthalate)", Int. J. Polym. Mater., 57, 73 (2008).   DOI
12 M. A. Osman, V. Mittal, M. Morbidelli, and U. W. Suter, "Polyurethane adhesive nanocomposites as gas permeation barrier", Macromolecules., 36, 9851 (2003).   DOI
13 C. H. Lee, H. B. Park, C. H. Park, S. Y. Lee, J. Y. Kim, J. E. McGrath, and Y. M. Lee, "Preparation of high-performance polymer electrolyte nanocomposites through nanoscale silica particle dispersion", J. Power. Sources., 195, 1325 (2010).   DOI
14 S. Z. Zhang, J. J. Liu, and K. C. Gong, "PE6400 templated monolithic mesoporous silica with orientated block structure", Mater. Lett., 61, 4137 (2007).   DOI
15 S. Y. Pyo and C. H. Lee, "Low-cost Backsheet Materials with Excellent Resistance to Chemical Degradation for Photovoltaic Modules", Membr. J., 25, 287 (2015).   DOI
16 P. Wagh and S. Ingale, "Comparison of some physico-chemical properties of hydrophilic and hydrophobic silica aerogels", Ceram. Int., 28, 43 (2002).   DOI
17 L. K. Koopal, T. Goloub, A. de Keizer, and M. P. Sidorova, "The effect of cationic surfactants on wetting, colloid stability and flotation of silica", Colloids. Surf. A. Physicochem. Eng. Asp., 151, 15 (1999).   DOI
18 C. H. Park, H. S. Kim, and Y. M. Lee, "Surface modification of proton exchange membrane by introduction of excessive amount of nanosized silica", Membr. J., 24, 301 (2014).   DOI