DOI QR코드

DOI QR Code

은 장식 이종접합 질화탄소를 이용한 가시광선 조건에서의 항생제 분해 연구

Degradation of Antibiotics Using Silver Decorated Heterojunction Carbon Nitride under Visible Light

  • Taeyoon, Lee (Department of Environmental Engineering, Pukyong National University)
  • 투고 : 2023.02.05
  • 심사 : 2023.02.22
  • 발행 : 2023.03.01

초록

흑연질화탄소(g-C3N4)는 가시광선 조사 하에서 항생제 분해에 효과적인 광촉매로 사용되어 왔다. 그러나 정공-전자쌍의 빠른 재결합은 광분해 효율을 제한하였다. 본 연구에서는 Ag를 마이크로파 보조 분해 방법에 의해 g-C3N4/g-C3N4 iso-type 이종 접합 광촉매에 결합시켰다. X선 회절분석, UV-DRS, FT-IR, PL 분석을 통해 이종접합의 구조와 물성을 규명하였고, Ag 장식 g-C3N4/g-C3N4 이종접합 광촉매는 g-C3N4/g-C3N4 iso-type 이종접합 및 벌크 g-C3N4 보다 우수한 성능을 보여주었다. Ag 장식 이종 접합 광촉매는 210분 이내에 가시광선 조사 하에서 설파메톡사졸 분해를 하여 우수한 광촉매 활성을 나타냈다. g-C3N4에 Ag의 첨가는 가시광선 흡수 범위를 넓히고 표면 플라즈몬 공명으로 인해 정공-전자쌍의 재결합을 제한하여 광촉매 활성을 향상시키는 것을 알 수 있었다.

Graphitic carbon nitride (g-C3N4) has been used as effective photocatalyst for degradation of antibiotics under visible light irradiation. However, the fast recombination of hole-electron pair may limit their photocatalytic efficiency. In our study, Ag was grafted on g-C3N4/g-C3N4 isotype heterojunction by a microwave-assisted decomposition method. The structure and physical properties of heterojunction photocatalyst were characterized through X-ray diffraction, UV-DRS, FT-IR, and Photoluminescence analyses. Ag decorated g-C3N4/g-C3N4 isotype heterojunction exhibited excellent photocatalytic activity for degradation of sulfamethoxazole under irradiation under visible light irradiation within 210 min, which is higher than g-C3N4/g-C3N4 isotype heterojunction and bulk g-C3N4. The addition of Ag may broaden the visible light absorption and restrict the recombination of hole-electron pair because of the surface plasmons resonance, resulting in the improving the photocatalytic activity.

키워드

과제정보

본 연구는 부경대학교 자율창의연구지원사업(과제번호: 202206610001)으로 수행되었습니다.

참고문헌

  1. Bellardita, M., Garcia-Lopez, E. I., Marci, G., Krivtsov, I., Garcia, J. R. and Palmisano, L. (2018), Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4, Applied Catalysis B: Environmental, Vol. 220, pp. 222~233. https://doi.org/10.1016/j.apcatb.2017.08.033
  2. Chen, M., Guo, C., Hou, S., Wu, L., Lv, J., Hu, C., Zhang, Y. and Xu, J. (2019), In-situ fabrication of Ag/P-g-C3N4 composites with enhanced photocatalytic activity for sulfamethoxazole degradation, Journal of Hazardous Materials, Vol. 366, pp. 219~228. https://doi.org/10.1016/j.jhazmat.2018.11.104
  3. Chen, K., Guo, H., Zhang, J., Wang, L. and Wu, M. (2022), 2D/2D Boron/g-C3N4Nanosheet Heterojunction Boosts Photocatalytic Hydrogen Evolution Performance, ACS Applied Energy Materials, Vol. 5, No. 9, pp. 10657~10666. https://doi.org/10.1021/acsaem.2c01370
  4. Dong, F., Zhao, Z., Xiong, T., Ni, Z., Zhang, W., Sun, Y. and Ho, W.K. (2013), In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis, ACS Applied Materials and Interfaces, Vol. 5, No. 21, pp. 11392~11401. https://doi.org/10.1021/am403653a
  5. Feng, L., Cheng, Y., Zhang, Y., Li, Z., Yu, Y., Feng, L., Zhang, S. and Xu, L. (2020), Distribution and human health risk assessment of antibiotic residues in large-scale drinking water sources in Chongqing area of the Yangtze River, Environmental Research, Vol. 185, p. 109386.
  6. Gao, M., Feng, J., Zhang, Z., Gu, M., Wang, J., Zeng, W., Lv, Y., Ren, Y., Wei, T. and Fan, Z. (2018), Wrinkled Ultrathin Graphitic C3N4 Nanosheets for Photocatalytic Degradation of Organic Wastewater, ACS Applied Nano Materials, Vol. 1, No. 12, pp. 6733~6741. https://doi.org/10.1021/acsanm.8b01528
  7. Gogoi, D., Shah, A. K., Qureshi, M., Golder, A. K. and Peela, N. R. (2021), Silver grafted graphitic-carbon nitride ternary hetero-junction Ag/gC3N4(Urea)-gC3N4(Thiourea) with efficient charge transfer for enhanced visible-light photocatalytic green H2 production, Applied Surface Science, Vol. 558, p. 149900
  8. Habibi-Yangjeh, A., Asadzadeh-Khaneghah, S., Feizpoor, S. and Rouhi, A. (2020), Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses?, Journal of Colloid and Interface Science, Vol. 580, pp. 503~514. https://doi.org/10.1016/j.jcis.2020.07.047
  9. Han, Q., Wang, B., Gao, J., Cheng, Z., Zhao, Y., Zhang, Z. and Qu, L. (2016), Atomically Thin Mesoporous Nanomesh of Graphitic C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution, ACS Nano, Vol. 10, No. 2, pp. 2745~2751 https://doi.org/10.1021/acsnano.5b07831
  10. Leong, K. H., Aziz, A. A., Sim, L. C., Saravanan, P., Jang, M. and Bahnemann, D. (2018), Mechanistic insights into plasmonic photocatalysts in utilizing visible light, Beilstein Journal of Nanotechnology, Vol. 9, No. 1, pp. 628~648. https://doi.org/10.3762/bjnano.9.59
  11. Li, Y., Ouyang, S., Xu, H., Wang, X., Bi, Y., Zhang, Y. and Ye, J. (2016), Constructing Solid-Gas-Interfacial Fenton Reaction over Alkalinized-C3N4 Photocatalyst to Achieve Apparent Quantum Yield of 49% at 420 nm, Journal of the American Chemical Society, Vol. 138, No. 40, pp. 13289~13297.
  12. Nguyen, T. B., Huang, C. P. and Doong, R. an (2019), Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites, Applied Catalysis B: Environmental, Vol. 240, pp. 337~347. https://doi.org/10.1016/j.apcatb.2018.08.035
  13. Nguyen, T. B., Huang, C. P., Doong, R. an, Chen, C. W. and Dong, C. di (2020), Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water, Chemical Engineering Journal, Vol. 384, p. 123383.
  14. Niu, P., Liu, G. and Cheng, H.M. (2012), Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride, Journal of Physical Chemistry C, Vol. 116, No. 20, pp. 11013~11018. https://doi.org/10.1021/jp301026y
  15. Oh, W. da, Chang, V.W.C., Hu, Z. T., Goei, R. and Lim, T. T. (2017), Enhancing the catalytic activity of g-C3N4 through Me doping (Me = Cu, Co and Fe) for selective sulfathiazole degradation via redox-based advanced oxidation process, Chemical Engineering Journal, Vol. 323, pp. 260~269.
  16. Paragas, L.K.B., de Luna, M.D.G. and Doong, R.A. (2018), Rapid removal of sulfamethoxazole from simulated water matrix by visible-light responsive iodine and potassium co-doped graphitic carbon nitride photocatalysts, Chemosphere, Vol. 210, pp. 1099~1107. https://doi.org/10.1016/j.chemosphere.2018.07.109
  17. Pham, T. T. and Shin, E. W. (2018), Influence of g-C3N4 Precursors in g-C3N4/NiTiO3 Composites on Photocatalytic Behavior and the Interconnection between g-C3N4 and NiTiO3, Langmuir, Vol. 34, No. 44, pp. 13144~13154. https://doi.org/10.1021/acs.langmuir.8b02596
  18. Shi, H., Li, Y., Wang, X., Yu, H. and Yu, J. (2021), Selective modification of ultra-thin g-C3N4 nanosheets on the (110) facet of Au/BiVO4 for boosting photocatalytic H2O2 production, Applied Catalysis B: Environmental, Vol. 297, p. 120414.
  19. Song, Y., Tian, J., Gao, S., Shao, P., Qi, J. and Cui, F. (2017), Photodegradation of sulfonamides by g-C3N4 under visible light irradiation: Effectiveness, mechanism and pathways, Applied Catalysis B: Environmental, Vol. 210, pp. 88~96. https://doi.org/10.1016/j.apcatb.2017.03.059
  20. Vu, T. T., Gulfam, M., Jo, S. H., Park, S. H. and Lim, K. T. (2022), Injectable and biocompatible alginate-derived porous hydrogels cross-linked by IEDDA click chemistry for reduction-responsive drug release application, Carbohydrate Polymers, Vol. 278, p. 118964.
  21. Tian, K., Liu, W. J. and Jiang, H. (2015), Comparative investigation on photoreactivity and mechanism of biogenic and chemosythetic Ag/C3N4 composites under visible light irradiation, ACS Sustainable Chemistry and Engineering, Vol. 3, No. 2, pp. 269~276. https://doi.org/10.1021/sc500646a
  22. Wang, W., Xin, X., An, K., Chen, Y., Zhao, Z., Tan, J., Yang, D. and Jiang, Z. (2022), Bioinspired construction of g-C3N4 isotype heterojunction on carbonized poly(tannic acid) nanorod surface with multistep electron transfer path, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 431, p. 114045.
  23. Wu, Y., Zhou, Y., Xu, H., Liu, Q., Li, Y., Zhang, L., Liu, H., Tu, Z., Cheng, X. and Yang, J. (2018), Highly Active, Superstable, and Biocompatible Ag/Polydopamine/g-C3N4 Bactericidal Photocatalyst: Synthesis, Characterization, and Mechanism, ACS Sustainable Chemistry and Engineering, Vol. 6, No. 11, pp. 14082~14094. https://doi.org/10.1021/acssuschemeng.8b02620
  24. Wu, D. L., Zhang, M., He, L. X., Zou, H. Y., Liu, Y. S., Li, B. B., Yang, Y. Y., Liu, C., He, L. Y. and Ying, G. G. (2020), Contamination profile of antibiotic resistance genes in ground water in com parison with surface water, Science of the Total Environment, Vol. 715, p. 136975.
  25. Xue, J., Ma, S., Zhou, Y., Zhang, Z. and He, M. (2015), Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation, ACS Applied Materials and Interfaces, Vol. 7, No. 18, pp. 9630~9637. https://doi.org/10.1021/acsami.5b01212
  26. Zhang, M., Yang, Y., An, X. and Hou, L. an (2021), A critical review of g-C3N4-based photocatalytic membrane for water purification, Chemical Engineering Journal, Vol. 412, p. 128663.
  27. Zhu, Q., Qiu, B., Du, M., Ji, J., Nasir, M., Xing, M. and Zhang, J. (2020), Dopant-Induced Edge and Basal Plane Catalytic Sites on Ultrathin C3N4 Nanosheets for Photocatalytic Water Reduction, ACS Sustainable Chemistry and Engineering, Vol. 8, No. 19, pp. 7497~7502. https://doi.org/10.1021/acssuschemeng.0c02122