• Title/Summary/Keyword: Decomposition mechanism

Search Result 283, Processing Time 0.024 seconds

Catalytic Activity of Metal-phthalocyanine Bonded on Polymer for Decomposition of Hydrogen Peroxide (고분자에 결합된 금속-프탈로시아닌의 과산화수소수 분해반응에 대한 촉매활성)

  • KimKong Soo 김공수;Yong Chul Chun;Young Woo Lee;Sang Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.662-668
    • /
    • 1989
  • The decomposition reaction of hydrogen peroxide was carried out by using metal-4,4',4",4"'-tetraaminophthalocyanine [Mt-$PcNH_2$, Mt = Fe(III), Co(II)] supported on poly (styrene-co-methacrylic acid), in heterogeneous aqueous system. These catalysts showed a catalse-like activity and Fe(III)-$PcNH_2$ supported on the copolymer was particularly effective for the decomposition of hydrogen peroxide. It was found that the rate of decomposition increased smoothly in the higher pH region and catalytic reaction was interfered by adding $CN^-,\;CNS^-,\;{C_2O_4}^{-2},\;I^-$ ions. The kinetics of the catalytic reaction was also investigated and the reaction proceeds according to the Michaelis-Menten type mechanism.

  • PDF

Study on the Development of CVD Precursors I-Synthesis and Properties of New Titanium β-Diketonates

  • 홍성택;임종태;이중철;Ming Xue;이익모
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.637-642
    • /
    • 1996
  • Preparation and properties of potential CVD (Chemical Vapor Deposition) precursors for the TiO2, a major component of the perovskite materials such as PT, PLT, PZT, and PLZT were investigated. Reactions between β-diketones and TiMe3, formed in situ failed to produce stable Ti(β-diketonate)3 complexes but a stable purple solid, characterized as (OTi(BPP)2)2 (BPP=1,3-biphenyl-1,3-propanedione) was obtained when BPP was used. Several new Ti(Oi-Pr)2(β-diketonate)2 complexes with aromatic or ring substituents were synthesized by the substitution reaction of Ti(OiPr)4by β-diketones and characterized with 1H NMR, IR, ICP, and TGA. Solid complexes such as Ti(Oi-Pr)2(BAC)2 (BAC=1.-phenyl-2,4-pentanedione), Ti(Oi-Pr)2(BPP)2, Ti(Oi-Pr)2(1-HAN)2 (1-HAN=2-hydroxy-1-acetonaphthone), Ti(Oi-Pr)2(2-HAN)2 (2-HAN=1-hydroxy-2-acetonaphthone), Ti(Oi-Pr)2(ACCP)2 (ACCP=2-acetylcyclopentanone), and Ti(Oi-Pr)2(HBP)2 (HBP=2-hydroxybenzophenone) were found to be stable toward moisture and air. Ti(Oi-Pr)2(ACCP)2 and Ti(Oi-Pr)2(HBP)2 were proved to have lower melting points and higher decomposition temperatures. However, these complexes are thermally stable and pyrolysis under an inert atmosphere resulted in incomplete decomposition. Ti(Oi-Pr)2(DPM)2 (DPM=dipivaloylmethane) and Ti(Oi-Pr)2(HFAA)2 (HFAA=hexafluoroacetylacetone) were sublimed substantially during the thermal decomposition. Pyrolysis mechanism of these complexes are dependent on type of β-diketone but removal of Oi-Pr ligands occurs before the decomposition of β-diketonate ligands.

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

Thermal Degradation Kinetics of Antimicrobial Agent, Poly(hexamethylene guanidine) Phosphate

  • Lee, Sang-Mook;Jin, Byung-Suk;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.491-498
    • /
    • 2006
  • The thermal degradation of poly(hexamethylene guanidine) phosphate (PHMG) was studied by dynamic thermogravimetric analysis (TGA) and pyrolysis-GC/MS (p-GC). Thermal degradation of PHMG occurs in three different processes, such as dephosphorylation, sublimation/vaporization of amine compounds and decomposition/ recombination of hydrocarbon residues. The kinetic parameters of each stage were calculated from the Kissinger, Friedman and Flynn-Wall-Ozawa methods. The Chang method was also used for comparison study. To investigate the degradation mechanisms of the three different stages, the Coats-Redfern and the Phadnis-Deshpande methods were employed. The probable degradation mechanism for the first stage was a nucleation and growth mechanism, $A_n$ type. However, a power law and a diffusion mechanism, $D_n$ type, were operated for the second degradation stage, whereas a nucleation and growth mechanism, $A_n$ type, were operated again for the third degradation stage of PHMG. The theoretical weight loss against temperature curves, calculated by the estimated kinetic parameters, well fit the experimental data, thereby confirming the validity of the analysis method used in this work. The life-time predicted from the kinetic equation is a valuable guide for the thermal processing of PHMG.

Involvement of $Cu^{++}$-Catalyzed Peroxidation in Degradation of Collagen and Protective Mechanism of Sodium Salicylate on this Peroxidative Reaction ($Cu^{++}$ 촉매작용에 의한 과산화 현상이 Collagen 손상에 관여함과 Sodium Salicylate에 의한 보호 작용)

  • Kim, Yong-Sik
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.25-31
    • /
    • 1987
  • The present study examines firstly, the inhibition of collagen gelation to explore the possible involvement of $Cu^{++}$-catalyzed peroxidation in rheumatoid arthritis and secondly, the effect of sodium salicylate on this peroxidative reaction to provide a possible explanation for its mechanism of anti-inflammatory action. Incubation of collagen obtained from rat skin with $Cu^{++}$ and $H_2O_2$ resulted in the inhibition of gelation in terms of maximal turbidity and lag phase, but either $Cu^{++}$ or $H_2O_2$ alone essentially gave no effect in the collagen gelation. In the presence of sodium salicylate the inhibited gelation of collagen induced by $Cu^{++}$ and $H_2O_2$ was reversed with the dependency of the concentration of sodium salicylate. Moreover, the rate of $H_2O_2$ decomposition by $Cu^{++}$ was accelerated by sodium salicylate and this decomposition of $H_2O_2$ was found to be saturable in terms of concentration of this drugs. Thus it can be expected that $Cu^{++}$ -catalyzed peroxidation attacks collagen resulting in change of structural or functional integrity of collagen, and sodium salicylate may act on this peroxidative process, possibly through the enhancement of catalatic action of $Cu^{++}$. From these results $Cu^{++}$-catalyzed peroxidation can be in part responsible for degradation of joint tissue in rheumatoid arthritis and sodium salicylate may exert its anti-inflammatory action by this peroxidative reaction.

  • PDF

An Event-Based Semantics for Japanese Emphatic Particles

  • Ishikawa, Akira
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.02a
    • /
    • pp.113-122
    • /
    • 2002
  • Following Herburger (2000), I will develop an event-based semantics for Japanese emphatic particles which can address the issue of the mechanism of association with focus involving the emphatic particles. The proposed semantics makes use of Herburger's three key ideas: events as basic entities, decomposition of predicates into subatomic formulas, and separation of backgrounded and foregrounded information.

  • PDF

Symbolic modeling of a 4-bar link flexible manipulator (4절기구를 가진 유연한 조작기의 기호적 모델링)

  • 이재원;주해호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.559-564
    • /
    • 1993
  • Nonlinear equation of motion of the flexible manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equations of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to high order. A manipulator with a flexible 4 bar link mechanism is a constrained system whose equations are sensitive to numerical integration error. This constrained system is solved using the null space matrix of the constraint Jacobian matrix. Singular value decomposition is a stable algorithm to find the null space matrix.

  • PDF

Spherical Particles Formation in Lubricated Sliding Contact -Micro-explosion due to the Thermally-activated Wear Process-

  • Kwon, O.K.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The mechanism of various spherical particles formation from wide range of tribo-systerns is suggested and deduced by the action of micro-explosion on the basis of the thermally-activated wear theory, in which the flash temperature at contact could be reached clearly upto the material molten temperature due to the secondary activation energy from the exothermic reactions involving lubricant thermo-decomposition, metals oxidation, hydrogen reactions and other possible complex thermo-reactions at the contacts. Various shapes of spherical particles generated from the tribosystem can be explained by the toroidal action of micro-explosion accompanied with the complex thermo-chemical reactions at the contact surfaces or sub-surfaces.

Kinetics of Reversible Consecutive Reactions

  • Park, Tae Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.243-245
    • /
    • 2013
  • Rate equations are exactly solved for the reversible consecutive reaction of the first-order and the time-dependence of concentrations is analytically determined for species in the reaction. With the assumption of pseudo first-order reaction, the calculation applies and determines the concentration of product accurately and explicitly as a function of time in the unimolecular decomposition of Lindemann and in the enzyme catalysis of Michaelis-Menten whose rate laws have been approximated in terms of reactant concentrations by the steady-state approximation.

Surface structure and phase separation mechanism of polysulfone membranes by AFM (AFM을 이용한 폴리술폰막의 표면구조와 상분리현상에 관한 연구)

  • 김제영;이환광;김성철
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.103-105
    • /
    • 1998
  • Asymmetric polymeric membranes prepared by the phase transition technique usually have either a top layer consisting of closely packed nodules or pores dispersed throughout the membrane surfaces. In this study, we present AFM image of a polysulfone membrane which show a clear evidence for the nodular structure and porous structure resulted from different phase separation mechanisms; spinodal decomposition and nucleation and growth. The surface morphology obtained by SEM and AFM was also compared.

  • PDF