Browse > Article

Thermal Degradation Kinetics of Antimicrobial Agent, Poly(hexamethylene guanidine) Phosphate  

Lee, Sang-Mook (Department of Applied Chemistry, Dongduk Women s University)
Jin, Byung-Suk (Department of Applied Chemistry, Dongduk Women s University)
Lee, Jae-Wook (Applied Rheology Center, Department of Chemical Engineering, Sogang University)
Publication Information
Macromolecular Research / v.14, no.5, 2006 , pp. 491-498 More about this Journal
Abstract
The thermal degradation of poly(hexamethylene guanidine) phosphate (PHMG) was studied by dynamic thermogravimetric analysis (TGA) and pyrolysis-GC/MS (p-GC). Thermal degradation of PHMG occurs in three different processes, such as dephosphorylation, sublimation/vaporization of amine compounds and decomposition/ recombination of hydrocarbon residues. The kinetic parameters of each stage were calculated from the Kissinger, Friedman and Flynn-Wall-Ozawa methods. The Chang method was also used for comparison study. To investigate the degradation mechanisms of the three different stages, the Coats-Redfern and the Phadnis-Deshpande methods were employed. The probable degradation mechanism for the first stage was a nucleation and growth mechanism, $A_n$ type. However, a power law and a diffusion mechanism, $D_n$ type, were operated for the second degradation stage, whereas a nucleation and growth mechanism, $A_n$ type, were operated again for the third degradation stage of PHMG. The theoretical weight loss against temperature curves, calculated by the estimated kinetic parameters, well fit the experimental data, thereby confirming the validity of the analysis method used in this work. The life-time predicted from the kinetic equation is a valuable guide for the thermal processing of PHMG.
Keywords
poly(hexamethylene guanidine) phosphate; thermal degradation kinetics; thermogravimetric analysis; pyrolysis-GC/MS; life-time;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 M. A. Chapurina, L. V. Redna, T. N. Yudanova, K. P. Khomyakov, T. A. Cherdyntseva, and A. I. Netrusov, Fibre Chem., 36, 30 (2004)   DOI   ScienceOn
2 M. S. Khil, H. Y. Kim, Y. S. Kang, H. J. Bang, and D. R. Lee, Macromol. Res., 13, 62 (2005)   DOI
3 W. S. Shim, J. S. Lee, and D. S. Lee, Macromol. Res., 13, 344 (2005)   DOI
4 J. P. Lin, C. Y. Chang, C. H. Wu, and S. M. Shih, Polym. Degrad. Stabil., 53, 295 (1996)   DOI   ScienceOn
5 H. L. Friedman, J. Polym. Sci. C, 6, 183 (1964)
6 T. J. Ozawa, Therm. Anal., 2, 301 (1970)   DOI
7 B. Saha and A. K. Ghoshal, Chem. Eng. J., 111, 39 (2005)   DOI   ScienceOn
8 S. Volker and Th. Rieckmann, J. Anal. Appl. Pyrol., 62, 165 (2002)   DOI   ScienceOn
9 J. Lede, Ind. Eng. Chem. Res., 39, 893 (2002)   DOI   ScienceOn
10 L. M. Antonik, V. A. Lopyrev, N. A. Korchevin, and V. P. Tomin, Russ. J. Appl. Chem., 75, 257 (2002)   DOI   ScienceOn
11 Z. Gao, I. Amasaki, and M. Nakada, J. Anal. Appl. Pyrol., 67, 1 (2003)   DOI   ScienceOn
12 H. E. Kissinger, Anal. Chem., 29, 1702 (1957)   DOI
13 X. Li, M. Huang, and Y. Yang, Polym. Int., 48, 1277 (1999)   DOI   ScienceOn
14 E. Yu. Aleshina, T. N. Yudanova, and I. F. Skokova, Fibre Chem., 33, 421 (2001)   DOI   ScienceOn
15 W. L. Chang, J. Appl. Polym. Sci., 53, 1759 (1994)   DOI   ScienceOn
16 T. N. Yudanova, I. F. Skokova, O. N. Bochkareva, and L. S. Gal'braikh, Fibre Chem., 33, 282 (2001)   DOI   ScienceOn
17 J. T. Sun, Y. D. Huang, G. F. Gong, and H. L. Cao, Polym. Degrad. Stabil., 91, 339 (2006)   DOI   ScienceOn