• 제목/요약/키워드: Decolorization

검색결과 322건 처리시간 0.029초

백색부후균에 의한 합성염료의 탈색과 리그닌분해 효소의 생산 (Decolorization of Synthetic Dyes and Ligninolytic Enzymes Production by White Rot Fungi)

  • 구본준;김민식;김인만;김선웅;최원혁;이미화;조해진;이태수
    • 한국균학회지
    • /
    • 제40권2호
    • /
    • pp.98-103
    • /
    • 2012
  • 본 연구에서는 백색부후균 중 줄버섯, 단색털구름버섯, 산느타리 및 유관버섯 등의 균사체를 이용하여 congo red, amaranth, orange G 및 methylene blue 등의 합성염료 탈색에 관한 실험을 수행하였다. 실험 결과 줄버섯과 단색털구름버섯은 congo red가 함유된 고체와 액체배지에서 이들 염료를 93~95% 탈색하였으며 amaranth는 약 80%, orange G는 62~70% 탈색시키는 것으로 나타났으나 유관버섯에 의한 3종류의 염료 탈색율은 30% 내외로 매우 낮았다. congo red, amaranth 및 orange G 등 각각의 염료가 첨가된 배지에서의 염료 탈색율은 이들 배지에서 배양한 균사체의 생장과 상관관계가 있는 것으로 나타났다. 그러나 모든 공시 균주는 methylene blue가 함유된 고체와 액체배지에서 methylene blue를 효과적으로 탈색하지 못하는 것으로 나타났다. 공시된 백색부후균의 액체 배지에서의 리그닌 분해효소 생산을 탐색하기 위해 1%의 나프탈렌이 첨가된 PDB 배지에 공시균을 10일 간 배양 후 효소의 종류와 양을 분석한 결과 모든 공시균은 laccase, lignin peroxidase 그리고 manganese peroxidase 등의 효소를 생산하는 것으로 확인되었으며 공시균주 중 줄버섯이 리그닌 분해 효소의 생산이 가장 왕성한 것으로 나타났다.

송곳니구름버섯(Irpex zonatus) BN2에 의한 아조계, 트리페닐메탄계 및 헤테로싸이클릭계 염료의 탈색 (Decolorization of Azo, Triphenylmethane and Heterocyclic Dyes by Irpex zonatus BN2)

  • 윤경하;최양순
    • 한국균학회지
    • /
    • 제26권1호통권84호
    • /
    • pp.8-15
    • /
    • 1998
  • 우리 나라 자연 환경에서 분리 동정된 송곳니구름버섯(Irpex zonatus) BN2 균주의 리그닌분해효소활성과 아조(azo)계, 트리페닐메탄(triphenylmethane)계 및 헤테로싸이클릭(heterocyclic)계에 속하는 몇몇 염료의 탈색능을 조사하였다. 송곳니구름버섯 BN2 균주는 lignin peroxidase(LiP)와 veratryl alcohol oxidase(VAO)를 생산하지 않고 laccase와 manganese dependent peroxidase(MnP)를 생산했다. MnP는 배양 3일부터 생산되었으나 효소활성은 매우 낮았다. 반면 laccase는 배양 초기부터 지속적으로 생산되었고 활성은 대단히 높았다. 균주를 염료와 함께 10일간 배양했을 때 아조계 염료인 orange II, orange G, tropaeolin O 및 congo red의 탈색율은 각각 98.0%, 97.4%, 99.0% 및 95.3%로 나타났고 트리페닐메탄계 염료인 basic fuchsin, malachite green 및 crystal violet 들은 98.5%, 95.7% 및 99.4%로, 헤테로싸이클릭계 염료에 속하는 eosin Y, toludine blue, methyl blue 및 azur B는 각각 97.4% 98.7%, 99.9% 및 94.0%의 탈색율을 보였다. 송곳니구름버섯 BN2 균주에 의한 염료의 탈색은 주로 laccase에 의하여 이루어진다고 생각된다.

  • PDF

혐기-호기 공정을 이용한 염료페수의 생물학적 처리 (Biological Treatemnt of Dye Wastewater Using an Anaerobic-Aerobic System)

  • 박영식;문정현;안갑환
    • 한국환경과학회지
    • /
    • 제11권6호
    • /
    • pp.569-576
    • /
    • 2002
  • Anaerobic/aerobic reactor system was used to treat a synthetic wastewater with glucose as carbon sources(0.38~2.29 kg COD/m3.day) and Acid Red 14(1.05 "24.00 g Acid Red 141m3.day, color degree of 570 ~ 1710). COD removal efficiency by the anaerobic stage in operation period were above 90 % organic loading rate of 0.38 ~ 2.29 kg COD/m3.day(except, adaptation period) and the removal efficiency of the whole system were above 96 %. The decolorization of the Acid Red 14 was through the alteration of the dye structure(or cleavage of the Azo bond) during the anaerobic treatment. In the A/A system, the anaerobic stage played an essential role in removing both color and COD. In addition it also improves biodegradability of dye f3r further aerobic treatment. After operation, average MLSS concentration of anaerobic sludge reactor, anaerobic fixed-bed reactor and aerobic fixed-bed reactor were 17100mg/L, 20000mg/L, and 10000mg/L, respectively.

Kinetic modeling analysis for the decolorization of dyes using a mixed adsorbent

  • Ravikumar, K.;Son, Young-A
    • 한국염색가공학회지
    • /
    • 제18권5호
    • /
    • pp.42-47
    • /
    • 2006
  • A mixed adsorbent prepared by pyrolysing a mixture of carbon and flyash in 1:1 ratio was tested for its deceleration ability for three different classes of dyes namely, Astrazone Blue FRR(Basic Blue 69), Teflon flue ANL(Acid Blue 125) and Verofix Red(Reactive Red 3GL). Kinetic analyses were carried out at the optimum conditions obtained by the author in the previous studies. The data was fitted with three kinetic model equations. The results showed that the dye uptake mechanism followed the second-order rate expression.

다양한 염료의 탈색이 가능한 목재부후균 분리 (Isolation of a Wood-rotting Fungus to Decolorize a Wide Range of Structurally Different Synthetic Dyes.)

    • 한국미생물·생명공학회지
    • /
    • 제31권3호
    • /
    • pp.301-306
    • /
    • 2003
  • Twenty-one different fungi were tested for their ability to decolorize a wide range of structurally different dyes. Twenty fungal strains were isolated from fruiting bodies which were collected at the Kwangneung National Arboretum, Korea. One fungal strain were isolated from a rotting wood at Soongsil University, Korea. Nine kinds of dyes were used: three anthraquinone dyes and six azo dyes. The five fungal strains, Laetiporus sulphureus, Polyporus arcularius. Auricularia polytricha, Stereum ostrea, and Bjerkandera sp. UK-l showed decolorization ability. Except Auricularia polytricha, the four fungal strains were wood rotting fungi, and belonged to Aphyllophorales. Bjerkandera sp. UK-I, which was a white rot fungus, could decolorize all kinds of dyes tested in this study, indicating this fungus is one of candidates for applying in biological methods of dye waste treatment.

Heterologous Expression of Phanerochaete chrysoporium Glyoxal Oxidase and its Application for the Coupled Reaction with Manganese Peroxidase to Decolorize Malachite Green

  • Son, Yu-Lim;Kim, Hyoun-Young;Thiyagarajan, Saravanakumar;Xu, Jing Jing;Park, Seung-Moon
    • Mycobiology
    • /
    • 제40권4호
    • /
    • pp.258-262
    • /
    • 2012
  • cDNA of the glx1 gene encoding glyoxal oxidase (GLX) from Phanerochaete chrysosporium was isolated and expressed in Pichia pastoris. The recombinant GLX (rGLX) produces $H_2O_2$ over 7.0 nmol/min/mL using methyl glyoxal as a substrate. Use of rGLX as a generator of $H_2O_2$ improved the coupled reaction with recombinant manganese peroxidase resulting in decolorization of malachite green up to $150{\mu}M$ within 90 min.

태양광/$TiO_2$ 반응기용 반사판 최적화에 관한 연구 (A Study on the Optimization of Reflector for Reactor Using Solar $Light/TiO_2$)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제32권4호
    • /
    • pp.373-380
    • /
    • 2006
  • The photocatalytic reactor using immobilized $TiO_2$ on silicone sealant was studied bench scale using solar light as the source of radiation. The influences of parameters such as shape, polishing extent and size of reflector, distance between reactor and reflector, an angle of inclination between reactor system and ground, were studies using Rhodamine B (RhB) as a model compound. respectively. The decolorization of round type among the reflector shapes was higher than that of the polygon and W type. The polishing extent of the reflector did not show the decolorization largely. The optimum size of reflector and distance between reactor and reflector were 38 cm and 6 cm, respectively.

염색폐수 색도저감을 위한 오존산화공정의 최적화 (Optimization of Ozone Oxidation process for Decolorization form dyeing wastewater)

  • 신동훈;최장승;이상헌;김성진;류승한;박준형;최성욱
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2008년도 제39차 학술발표회
    • /
    • pp.115-116
    • /
    • 2008
  • The textile wastewater discharged from printing and dyeing processes is characterized by high chemical oxygen demand(COD), low biochemical oxygen demand(BOD), and heavy color. The release of dyes into the environment constitutes only small proportion of water pollution, but dyes are visible in small quantities due to their brilliance. In this study, We are investigated to optimization of Ozone Oxidation process for Decolorization.

  • PDF

곰팡이를 이용한 염료의 탈색 및 생분해 (Biodecolorization and Biodegradation of Dye by Fungi: A Review)

  • 조경숙;류희욱
    • KSBB Journal
    • /
    • 제30권5호
    • /
    • pp.203-222
    • /
    • 2015
  • In recent years, there has been an intensive research on the application of degradative activities of fungi for treatment of various non-degradable materials such as petroleum hydrocarbons, polychlorinated biphenyls, pesticides, polycyclic aromatic hydrocarbons, dyes and so on. Chief of all, the fungal treatment technology is received the spotlight as one of the most promising alternatives to replace present methods for the treatment of dye wastewater. The present paper reviews the recent trend in research on the decolorization and biodegradation of dyes by various fungi, and improvements in bioreactors and bioprocesses involved the fungal treatment of dye wastewater. It also discusses alternatives and perspectives for the innovation of mycoremediation to treat dye wastewaters.

황토를 이용한 Acid Orange II의 색도제거 (Decolorization of Acid Orange II from Aqueous Solutions using Loess)

  • 박재홍
    • 한국물환경학회지
    • /
    • 제27권2호
    • /
    • pp.141-146
    • /
    • 2011
  • Loess, a natural clay, was evaluated as an adsorbent for the decolorization of Acid Orange II, an azo and reactive dye, from aqueous solution. Adsorption studies were performed at $30^{\circ}C$ and the effect of reaction time, loess dosage, initial concentration, loess particle size, pH, agitation rate were investigated to determine the optimum operation conditions. The removal efficiencies of color were measured to evaluate the effectiveness of loess. From this study, it was found that optimal reaction time was 10 min. Color removal efficiencies of Acid Orange II were increased as higher loess dosage, initial concentration and agitation rate. However, color removal efficiencies decreased when pH is high and loess particle becomes large. Adsorption of Acid Orange II fitted to the pseudo-second-order rate kinetics more than first-order rate kinetics. Langmuir and Freundlich adsorption isotherm constants and correlation coefficients were calculated and compared. It was concluded that the adsorption data of Acid Orange II onto loess fitted to the Freundlich model more than Langmuir model.