• Title/Summary/Keyword: Decode and Forward Relay

Search Result 154, Processing Time 0.027 seconds

Opportunistic Relay Selection for Joint Decode-and-Forward Based Two-Way Relaying with Network Coding

  • Ji, Xiaodong;Zheng, Baoyu;Zou, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1513-1527
    • /
    • 2011
  • This paper investigates the capacity rate problems for a joint decode-and-forward (JDF) based two-way relaying with network coding. We first characterize the achievable rate region for a conventional three-node network scenario along with the calculation of the corresponding maximal sum-rate. Then, for the goal of maximizing the system sum-rate, opportunistic relay selection is examined for multi-relay networks. As a result, a novel strategy for the implementation of relay selection is proposed, which depends on the instantaneous channel state and allows a single best relay to help the two-way information exchange. The JDF scheme and the scheme using relay selection are analyzed in terms of outage probability, after which the corresponding exact expressions are developed over Rayleigh fading channels. For the purpose of comparison, outage probabilities of the amplify-and-forward (AF) scheme and those of the scheme using relay selection are also derived. Finally, simulation experiments are done and performance comparisons are conducted. The results verify that the proposed strategy is an appropriate method for the implementation of relay selection and can achieve significant performance gains in terms of outage probability regardless of the symmetry or asymmetry of the channels. Compared with the AF scheme and the scheme using relay selection, the conventional JDF scheme and that using relay selection perform well at low signal-to-noise ratios (SNRs).

Outage Analysis of OFDM-Based Dual-hop Multi-Relay Systems with Best Relay Selection (최선 릴레이 선택을 적용한 OFDM 기반 이중-홉 다중 릴레이 시스템의 아웃티지 성능 분석)

  • Park, Jae-Cheol;Wang, Jin-Soo;Lee, Ji-Hye;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.487-494
    • /
    • 2010
  • This paper presents an OFDM-based dual-hop multi-relay system with best relay selection maximizing the mutual information. For the system either with decode-and-forward (DF) relays or with amplify-and-forward (AF) relays, we derive a lower-bound on the outage probability and the diversity order achievable in frequency selective fading channels and provide the outage capacity from simulation. Performance evaluation shows that both DF and AF provide the same diversity order as in the lower-bound but DF of which the outage probability is much closer to the lower-bound provides a better outage capacity than AF. It is also observed that the SNR gain of DF over AF gets larger as either the number of resolvable multipaths or the number of relay candidates increases, which makes DF relaying more favorable to the OFDM-based multi-relay system.

Link Adaptation and Selection Method for OFDM Based Wireless Relay Networks

  • Can, Basak;Yomo, Hiroyuki;Carvalho, Elisabeth De
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.118-127
    • /
    • 2007
  • We propose a link adaptation and selection method for the links constituting an orthogonal frequency division multiplexing (OFDM) based wireless relay network. The proposed link adaptation and selection method selects the forwarding, modulation, and channel coding schemes providing the highest end-to-end throughput and decides whether to use the relay or not. The link adaptation and selection is done for each sub-channel based on instantaneous signal to interference plus noise ratio (SINR) conditions in the source-to-destination, source-to-relay and relay-to-destination links. The considered forwarding schemes are amplify and forward (AF) and simple adaptive decode and forward (DF). Efficient adaptive modulation and coding decision rules are provided for various relaying schemes. The proposed end-to-end link adaptation and selection method ensures that the end-to-end throughput is always larger than or equal to that of transmissions without relay and non-adaptive relayed transmissions. Our evaluations show that over the region where relaying improves the end-to-end throughput, the DF scheme provides significant throughput gain over the AF scheme provided that the error propagation is avoided via error detection techniques. We provide a frame structure to enable the proposed link adaptation and selection method for orthogonal frequency division multiple access (OFDMA)-time division duplex relay networks based on the IEEE 802.16e standard.

The performance of MIMO cooperative communication systems using the relay with multi-antennas and DSTC

  • Chan Kyu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.14-23
    • /
    • 2023
  • The cooperative communication systems using MIMO(multiple input multiple-output) relay are known as one of the most promising techniques to improve the performance and coverage of wireless communication systems. In this paper, we propose the cooperative communication systems using the relay with multi-antennas and DSTC(distributed space time coding) for decode-and-forward protocol. As using DSTC for DF(decode-and-forward), we can minimize the risk of error propagation at the wireless system using relay system. Also, the MIMO channel cab be formed by multi-antenna and DSTC at the MS(mobile station)-RS(relay station) and at the RS-BS(base station).Therefore, obtaining truly constructive the MIMO diversity and cooperative diversity gain from the proposed approach, the performance of system can be more improved than one of conventional system (relay with single antenna, no relay). The improvement in bit error rate is investigated through numerical analysis of the cooperative communication system with the proposed approach.

Maximizing Secrecy Rate and Performance Analysis of Relay Selection for Cooperative Diversity Networks in Presence of an Eavesdropper (도청자가 존재하는 무선 협력 네트워크의 전달 단말 선택을 통한 보안 전송률 최대 전송기술 및 성능분석)

  • Ju, MinChul;Kwon, Tai-Gil;Cho, Jin-Woong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.533-540
    • /
    • 2015
  • We study relay selection in decode-and-forward (DF)-based relay networks consisting of a source, a destination, an eavesdropper, and multiple relays, where each terminal has a single antenna and operates in a half-duplex mode. In these networks, it is desirable to protect the confidential message from the source to the destination against the eavesdropper with the help of a single selected relay. Specifically, we begin by investigating DF-based networks for the scenario instantaneous signal-to-noise ratios (SNRs) related to the eavesdropper are available. For the scenario, we propose relay selection to maximize the secrecy rate of DF-based networks with and without direct-paths, and we derive the exact secrecy outage probabilities in closed-form.

Performance Analysis of Wireless-powered Backscatter Communication with TSR-based Relay (TSR 릴레이를 활용한 무선 전력 Backscatter 통신 성능 분석)

  • Park, Si Woo;Park, Jae Hyun;Hwang, Kyu-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1164-1170
    • /
    • 2020
  • In this paper, we consider the wireless-powered backscatter communication which consists of a power beacon, a source, a relay, and a destination. For the proposed wireless-powered backscatter communication, the source transmits its signals to both the relay and the destination via a backscattering channel and the relay which has a rechargeable battery performs an energy harvesting as well as an information forwarding based on the time switching relay (TSR) protocol. Based on the decode-and-forward (DF) relay transmission, we investigate performances of the proposed system in terms of outage probability and transmission rate in which the exact performance analysis of outage probability is given. Finally, some numerical examples are given to verify our provided analytical results for different system conditions.

Outage Capacity Analysis for Cooperative DF and AF Relaying in Dissimilar Rayleigh Fading Channels

  • Shrestha, Suchitra;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.361-370
    • /
    • 2008
  • Cooperative relaying permits one or more relay to transmit a signal from the source to the destination, thereby increasing network coverage and spectral efficiency. The performance of cooperative relaying is often measured as outage probability. However, appropriate measure for the channel quality is outage capacity. Although the outage probability for cooperative relaying protocol has been analyzed before, very little research has been addressed for the outage capacity. This paper is the first of its kind to derive a closed-form analytical solution of outage capacity using fixed decode and forward relaying and amplify and forward relaying in dissimilar Rayleigh fading channels, considering channel coefficients known to the receiver side. The analytical results show a tradeoff between the SNR and the number of relays for specific outage capacity. A comparison between decode and forward relaying and amplify and forward relaying shows that decode and forward relaying outperforms amplify and forward relaying for a large number of relays.

Study on Relaying Path Selection Using One-Hop Channel Information in Decode-and-Forward Relaying Based Multi-Hop Systems (디코딩 후 전달 중계 기반 다중 홉 시스템에서 하나의 홉 채널 정보를 이용하는 중계 경로 선택 기법 연구)

  • Lee, In-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.87-95
    • /
    • 2013
  • In this paper, the outage probability of efficient partial relay selection(EPRS) using only one-hop channel information in multi-hop systems is analyzed in Rayleigh fading channels. In particular, we derive an exact and closed-form expression for the outage probability of decode-and-forward relaying based EPRS. In order to prove the usefulness of EPRS in multi-hop systems, we also analyze the correlation between the end-to-end signal-to-noise ratio(SNR) and the SNR for each hop at an arbitrary relaying path. Furthermore, through numerical investigation, we compare the outage performances for EPRS and the best relay selection using all channel information.

Semi-Analytical BER Evaluation Based on Error-Events at Relay Nodes for Decoded-and-Forward Relay Systems (복호 후 전달 릴레이 시스템의 평균 오류율에 대한 릴레이 노드에서의 오류 사건 기반의 의사-분석 기법)

  • Ko, Kyun-Byoung;Seo, Jeong-Tae
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.64-69
    • /
    • 2011
  • In this paper, a semi-analytical approach is proposed for decode-and-forward(DF) relay systems over rayleigh fading channels. At first, we derive the general form of the averaged bit error rate(BER) based on error-events at relay nodes in which a selection scheme is not used. It is confirmed that an erroneous detection and transmission at relay nodes can cause the degradation of the received signal-to-noise ratio (SNR) and the averaged BER performance. Furthermore, the proposed method can be extended to selective-DF(SDF) relay schemes so that it is verified to be another general solution for DF relay systems. Also, proposed semi-analytical expressions have been verified by comparing with simulations.

Long-term Fading Statistics-Based Power Allocation for Fixed Decode-and-Forward Relays

  • Kong, Hyung-Yun;Bao, Vo Nguyen Quae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1138-1146
    • /
    • 2008
  • This paper considers 2-hop wireless cooperative communications networks with fixed decode-and-forward relays. Specifically, we first derive the closed-form BER expression for theoretically evaluating the end-to-end performance of these networks. Then, based on this expression and long-tenn fading statistics, we propose a power allocation method for source and relay. Such a method brings about multiple advantages in tenn of spectral efficiency and implementation complexity over other power allocation methods based on instantaneous fading statistics. A variety of numerical results reveal that the cooperative communications scheme with the proposed power allocation significantly outperforms that with the equal power allocation and the direct transmission scheme for any position of the relay subject to the same total transmit power constraint.