• Title/Summary/Keyword: Decision support techniques

Search Result 220, Processing Time 0.028 seconds

Exploring the Performance of Multi-Label Feature Selection for Effective Decision-Making: Focusing on Sentiment Analysis (효과적인 의사결정을 위한 다중레이블 기반 속성선택 방법에 관한 연구: 감성 분석을 중심으로)

  • Jong Yoon Won;Kun Chang Lee
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.47-73
    • /
    • 2023
  • Management decision-making based on artificial intelligence(AI) plays an important role in helping decision-makers. Business decision-making centered on AI is evaluated as a driving force for corporate growth. AI-based on accurate analysis techniques could support decision-makers in making high-quality decisions. This study proposes an effective decision-making method with the application of multi-label feature selection. In this regard, We present a CFS-BR (Correlation-based Feature Selection based on Binary Relevance approach) that reduces data sets in high-dimensional space. As a result of analyzing sample data and empirical data, CFS-BR can support efficient decision-making by selecting the best combination of meaningful attributes based on the Best-First algorithm. In addition, compared to the previous multi-label feature selection method, CFS-BR is useful for increasing the effectiveness of decision-making, as its accuracy is higher.

Blockchain-Enabled Decentralized Clustering for Enhanced Decision Support in the Coffee Supply Chain

  • Keo Ratanak;Muhammad Firdaus;Kyung-Hyune Rhee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.260-263
    • /
    • 2023
  • Considering the growth of blockchain technology, the research aims to transform the efficiency of recommending optimal coffee suppliers within the complex supply chain network. This transformation relies on the extraction of vital transactional data and insights from stakeholders, facilitated by the dynamic interaction between the application interface (e.g., Rest API) and the blockchain network. These extracted data are then subjected to advanced data processing techniques and harnessed through machine learning methodologies to establish a robust recommendation system. This innovative approach seeks to empower users with informed decision-making abilities, thereby enhancing operational efficiency in identifying the most suitable coffee supplier for each customer. Furthermore, the research employs data visualization techniques to illustrate intricate clustering patterns generated by the K-Means algorithm, providing a visual dimension to the study's evaluation.

Design of Process Management System based on Data Mining and Artificial Modelling for the Etching Process (데이터 마이닝과 지능 모델링에 기반한 에칭공정의 공정관리시스템 설계)

  • Bae, Hyeon;Kim, Sung-shin;Woo, Kwang-Bang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.390-395
    • /
    • 2004
  • A semiconductor manufacturing process is the complicate and dynamic process, and consists of many sub-processes. An etching process is the most important process in the semiconductor fabrication. In this paper, the decision support system based upon data mining and knowledge discovery is an important factor to improve the productivity and yield. The proposed decision support system consists of a neural network model and an inference system based on fuzzy logic Firstly, the product results are predicted by the neural network model constructed by the product patterns that represent the quality of the etching process. And the product patters are classified by expert's knowledge. Finally, the product conditions are estimated by the fuzzy inference system using the rules extracted from the classified patterns. Prediction of product qualities can be linked to each input and process variables. We employ data mining and intelligent techniques to find the best condition of the etching process. The proposed decision support system is efficient and easy to be implemented for the process management based upon expert's knowledge.

Development of a Web-based Integrated System for Flow of Agricultural Products (Web 기반의 농산물 유통분석 통합 시스템 개발)

  • Suh, Kyo;Lee, Jeong-Jae;Kim, Tae-Gon
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.2 s.27
    • /
    • pp.1-8
    • /
    • 2005
  • This study is to develop a web-based integrated system for flow of agricultural products based on recent researches with engineering approach. The system stands on the basis of web for accessibility and usability. Three parts of the system consist of analysis of regional shipping characteristics using tank model, estimation of pallet load efficiency with Monte Carlo Simulation, a long term prediction of market price with reliability analysis. Besides a decision support module for selecting optimal shipping market is added through synthesizing techniques and spatial analysis using GIS and applied to Chinese cabbage of Pyeongchang in 2004.

A Framework for Continuous operational techniques of AI Model based on Rule (Rule 기반 AI 모델의 지속운용을 위한 프레임워크)

  • Yeong-Ji Park;Tae-Jin Lee
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.432-433
    • /
    • 2023
  • 오늘날 AI 기술은 다양한 분야에서 활용되며 발전해나가고 있다. 하지만 AI 모델의 복잡도가 증가하며 AI의 산출 결과의 해석이 불가능한 Black-box 성격을 지니게 되었고, 이는 실 환경에서 AI 도입의 커다란 걸림돌로 작용하고 있다. 이에 따라 AI 판단 결과에 대한 Interpretation을 제공하는AI Decision Support의 중요성이 커지는 추세이다. 본 논문에서는 Reference 기반 Rule을 통해 AI 모델의 판단 결과에 대한 해석을 제공하고 입력된 데이터에 관한 Rule 적합도를 산출하여 AI Decision Support를 제공하고자 한다. 또한, Rule 적합도 정보를 기반으로 기존의 모델보다 정확한산출 결과를 통해 수집된 데이터의 Label을 확정시킨다. 이를 토대로 AI 모델의 업데이트를 실행하여 지속적으로 AI의 성능을 개선하면서도 지속 운용이 가능한 AI 운용 프레임워크를 제안한다.

A decision making framework model for the selection of a RP using hybrid multiple attribute decision making techniques (3차원 조형장비 선정을 위한 복합 다요소 의사결정 구조 모델 개발에 관한 연구)

  • Byun, Hong-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.87-95
    • /
    • 2008
  • The purpose of this study is to provide a decision support to select an appropriate rapid prototyping(RP) machine that suits the application of a part. Selection factors include concept model, form/fit/functional model, pattern model for molding, material property, build time and part cost that greatly affect the performance of RP machines. However, the selection of a RP is not an easy decision because they are uncertain and vague. For this reason, the aim of this research is to propose hybrid multiple attribute decision making approaches to effectively evaluate RP machines. In addition, because subjective considerations are relevant to selection decision, a fuzzy logic approach is adopted. The proposed selection procedure consists of several steps. First, we identify RP machines that the users consider. After constructing the evaluation criteria, we calculate the weights of the criteria by applying the fuzzy Analytic Hierarchy Process(AHP) method. Finally, we construct the fuzzy Technique of Order Preference by Similarity to Ideal Solution(TOPSIS) method to achieve the ranking order of all machines providing the decision information for the selection of RP machines.

  • PDF

An Application of Support Vector Machines to Personal Credit Scoring: Focusing on Financial Institutions in China (Support Vector Machines을 이용한 개인신용평가 : 중국 금융기관을 중심으로)

  • Ding, Xuan-Ze;Lee, Young-Chan
    • Journal of Industrial Convergence
    • /
    • v.16 no.4
    • /
    • pp.33-46
    • /
    • 2018
  • Personal credit scoring is an effective tool for banks to properly guide decision profitably on granting loans. Recently, many classification algorithms and models are used in personal credit scoring. Personal credit scoring technology is usually divided into statistical method and non-statistical method. Statistical method includes linear regression, discriminate analysis, logistic regression, and decision tree, etc. Non-statistical method includes linear programming, neural network, genetic algorithm and support vector machine, etc. But for the development of the credit scoring model, there is no consistent conclusion to be drawn regarding which method is the best. In this paper, we will compare the performance of the most common scoring techniques such as logistic regression, neural network, and support vector machines using personal credit data of the financial institution in China. Specifically, we build three models respectively, classify the customers and compare analysis results. According to the results, support vector machine has better performance than logistic regression and neural networks.

Fingerprint Classification using Multiple Decision Templates with SVM (SVM의 다중결정템플릿을 이용한 지문분류)

  • Min Jun-Ki;Hong Jin-Hyuk;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1136-1146
    • /
    • 2005
  • Fingerprint classification is useful in an automated fingerprint identification system (AFIS) to reduce the matching time by categorizing fingerprints. Based on Henry system that classifies fingerprints into S classes, various techniques such as neural networks and support vector machines (SVMs) have been widely used to classify fingerprints. Especially, SVMs of high classification performance have been actively investigated. Since the SVM is binary classifier, we propose a novel classifier-combination model, multiple decision templates (MuDTs), to classily fingerprints. The method extracts several clusters of different characteristics from samples of a class and constructs a suitable combination model to overcome the restriction of the single model, which may be subject to the ambiguous images. With the experimental results of the proposed on the FingerCodes extracted from NIST Database4 for the five-class and four-class problems, we have achieved a classification accuracy of $90.4\%\;and\;94.9\%\;with\;1.8\%$ rejection, respectively.

Axial load prediction in double-skinned profiled steel composite walls using machine learning

  • G., Muthumari G;P. Vincent
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.739-754
    • /
    • 2024
  • This study presents an innovative AI-driven approach to assess the ultimate axial load in Double-Skinned Profiled Steel sheet Composite Walls (DPSCWs). Utilizing a dataset of 80 entries, seven input parameters were employed, and various AI techniques, including Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree Regression, Decision Tree with AdaBoost Regression, Random Forest Regression, Gradient Boost Regression Tree, Elastic Net Regression, Ridge Regression, and LASSO Regression, were evaluated. Decision Tree Regression and Random Forest Regression emerged as the most accurate models. The top three performing models were integrated into a hybrid approach, excelling in accurately estimating DPSCWs' ultimate axial load. This adaptable hybrid model outperforms traditional methods, reducing errors in complex scenarios. The validated Artificial Neural Network (ANN) model showcases less than 1% error, enhancing reliability. Correlation analysis highlights robust predictions, emphasizing the importance of steel sheet thickness. The study contributes insights for predicting DPSCW strength in civil engineering, suggesting optimization and database expansion. The research advances precise load capacity estimation, empowering engineers to enhance construction safety and explore further machine learning applications in structural engineering.

Using Data Mining Techniques to Predict Win-Loss in Korean Professional Baseball Games (데이터마이닝을 활용한 한국프로야구 승패예측모형 수립에 관한 연구)

  • Oh, Younhak;Kim, Han;Yun, Jaesub;Lee, Jong-Seok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.1
    • /
    • pp.8-17
    • /
    • 2014
  • In this research, we employed various data mining techniques to build predictive models for win-loss prediction in Korean professional baseball games. The historical data containing information about players and teams was obtained from the official materials that are provided by the KBO website. Using the collected raw data, we additionally prepared two more types of dataset, which are in ratio and binary format respectively. Dividing away-team's records by the records of the corresponding home-team generated the ratio dataset, while the binary dataset was obtained by comparing the record values. We applied seven classification techniques to three (raw, ratio, and binary) datasets. The employed data mining techniques are decision tree, random forest, logistic regression, neural network, support vector machine, linear discriminant analysis, and quadratic discriminant analysis. Among 21(= 3 datasets${\times}$7 techniques) prediction scenarios, the most accurate model was obtained from the random forest technique based on the binary dataset, which prediction accuracy was 84.14%. It was also observed that using the ratio and the binary dataset helped to build better prediction models than using the raw data. From the capability of variable selection in decision tree, random forest, and stepwise logistic regression, we found that annual salary, earned run, strikeout, pitcher's winning percentage, and four balls are important winning factors of a game. This research is distinct from existing studies in that we used three different types of data and various data mining techniques for win-loss prediction in Korean professional baseball games.