It is usually difficult for a single user to have all the essential knowledge on various Rapid Prototyping processes and techniques. It is therefore necessary to capture knowledge and experience of users of expert level into a decision-support system which provides quicker and more interactive way to select proper RP process and/or machine. rather than reading reports on benchmarking studies and comparing tables and graphs. In this paper two algorithms are presented, which may be used in such a decision-support system. together with its applications. The one is an extended PRES(Project Evaluation and Selection) algorithm which applies weighting factors of each attribute. The other is a LCE(Linear Confidence Equation) algorithm which is proposed to apply user's input requirements as well as weighting factors.
Recently, support vector machines (SVMs) are being recognized as competitive tools as compared with other data mining techniques for solving pattern recognition or classification decision problems. Furthermore, many researches, in particular, have proved it more powerful than traditional artificial neural networks (ANNs)(Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al, 2005; Kim, 2003). The classification decision, such as a binary or multi-class decision problem, used by any classifier, i.e. data mining techniques is cost-sensitive. Therefore, it is necessary to convert the output of the classifier into well-calibrated posterior probabilities. However, SVMs basically do not provide such probabilities. So it required to use any method to create probabilities (Platt, 1999; Drish, 2001). This study applies a method to estimate the probability of outputs of SVM to bankruptcy prediction and then suggests credit scoring methods using the estimated probability for bank's loan decision making.
미래를 예측하는 기법은 통계에 기반을 둔 것과 딥러닝에 기반을 둔 기술로 분류할 수 있다. 그중 통계에 기반을 둔 것이 간단하고 정확성이 높아서 많이 사용된다. 하지만 실무자들은 많은 분석기법의 올바른 사용에 어려움이 많다. 이번 연구에서는 마케팅에 관련된 데이터에 다항로지스틱회귀, 의사결정나무, 랜덤포레스트, 서포트벡터머신, 베이지안 추론을 적용하여 예측의 정확성을 비교하였다. 동일한 마케팅 데이터를 대상으로 하였고, R을 활용하여 분석을 진행하였다. 마케팅 분야의 데이터 특성을 반영한 다양한 기법의 예측 결과가 실무자들에게 좋은 참고가 될 것으로 생각한다.
Abnormal samples are usually difficult to obtain in production systems, resulting in imbalanced training sample sets. Namely, the number of positive samples is far less than the number of negative samples. Traditional Support Vector Machine (SVM)-based anomaly detection algorithms perform poorly for highly imbalanced datasets: the learned classification hyperplane skews toward the positive samples, resulting in a high false-negative rate. This article proposes a new imbalanced SVM (termed ImSVM)-based anomaly detection algorithm, which assigns a different weight for each positive support vector in the decision function. ImSVM adjusts the learned classification hyperplane to make the decision function achieve a maximum GMean measure value on the dataset. The above problem is converted into an unconstrained optimization problem to search the optimal weight vector. Experiments are carried out on both Cloud datasets and Knowledge Discovery and Data Mining datasets to evaluate ImSVM. Highly imbalanced training sample sets are constructed. The experimental results show that ImSVM outperforms over-sampling techniques and several existing imbalanced SVM-based techniques.
21세기 들어와 기업은 갈수록 복잡해지고 변동성이 커지는 경영환경에 직면하게 되었다. 또한 다양한 고객의 요구와 치열해지는 경쟁에 대응하기 위하여 경영 전 분야에 걸쳐 긴밀하고 체계적인 의사결정 대안을 선택하고 관리해야 하는 부담이 가중되고 있다. 본 연구에서는 경영의사결정을 지원할 수 있는 기술모델을 컨설팅 문제해결 절차와 기법, 경영프로세스 지식체계와 연계하여 구성하고 문제해결도구로써 지식체계에 기반한 시뮬레이션 도구 활용에 대하여 논의하였다. 나아가 제안하는 경영의사결정지원 기술모델의 시스템구현을 통한 체계적인 지식체계의 확충과 발전 필요성을 논의하였다. 경영의사결정지원 기술모델은 크게 세 가지 요소로써 구성되는데 첫 번째는 문제해결기법으로 참조자료로써 활용이 되며, 두 번째는 표준비즈니스 프로세스와 참조프로세스 모델 정보를 포함하는 프로세스관련 지식체계이다. 세 번째 요소는 문제해결기법과 프로세스 관련 지식체계를 정보로 활용하여 대안을 생성하고 분석하는 도구인 시뮬레이터로 정의하였다. 위의 세 가지 주요요소들은 컨설팅 과정전반에서 표준화된 문세해결 절차에 따라 체계적 분석을 수행하도록 하는 가이드라인을 제세하고 각 분석단계별로 분석기법에 대한 정보를 제공하여 의사결정의 정확성와 객관성 확보를 지원한다. 경영의사결정 지원기술 모델은 궁극적으로 지식집약형 컨설팅 프로세스를 지원하여 다양한 컨설팅 지식을 축적하고 컨설팅기법의 발전과 활용을 촉진하여 컨설팅 산업 발전의 기반기술 개발에 기본 프레임워크를 제공하는데 의의를 지닌다.
The main purpose of this study is to review the current system and to develop a decision support system for evaluating the priorities among those possible alternatives in the army facility enterprise. This paper also provides an information system which can be effectively applied to various criteria and stages in decision making process such as Planning and Programming phases in PPBEES. The model base of decision support systems uses the concepts of the analytic hierarchy process along with the supplementary techniques such as TOPSIS and 0-1 integer programming. Both AHP and TOPSIS are used scoring approaches in the Planning phase and IP is induced at the Programming phase to give GO/NO-GO solution for each project. We use Expert Choice, Excel and LINDO s/w's to implement a prototyped model. The proposed methodology in this paper enables the decision makers to evaluate the priority based on quantitative and qualitative data in a systematic way.
Purpose: This study aimed to explore and understand the experience of decision making among women undergoing or forgoing selective fetal reduction who have higher-order multiple pregnancies through assisted reproductive techniques. Methods: A qualitative study was conducted from August 1, to October 30, 2013. Eight participants were interviewed and the interviews were audio-recorded and transcribed verbatim. Six persons participated in in-depth interviews in person and two participated over the telephone. A thematic analysis was conducted. Results: Four themes were identified and carefully named: Confusion after higher-order multiple pregnancy; Obstacles to choice: Uncertain safety; Weighing between reality and ideality and; Influences of medical professionals. Conclusion: The results demonstrated a wide range of factors considered by women when making decisions about selective fetal reduction, and mothers' feelings of conflict and distress in the decision-making process. The results suggest that it is important for nurses to provide emotional support and consolation, in addition to sufficient information. These findings will help nurses improve their counseling techniques by understanding the situation of infertile couples.
Despite their tilde application of some traditional project management techniques like the Program Evaluation and Review Technique, they lack of learning, one of important factors in many disciplines today due to a static view far prefect progression. This study proposes a framework for estimation by learning based on a Linear Bayesian approach. As a project progresses, we sequentially observe the durations of completed activities. By reflecting this newly available information to update the distribution of remaining activity durations and thus project duration, we can implement a decision support system that updates e.g. the expected project completion time as well as the probabilities of completing the project within talc due date and by a certain date. By Implementing such customized systems, project manager can be aware of changing project status more effectively and better revise resource allocation plans.
Despite their wide application of some traditional project management techniques like the Program Evaluation and Review Technique, they lack of learning, one of important factors in many disciplines today, due to a static view for project progression. This study proposes a framework for estimation by loaming based on a Linear Bayesian approach. As a project Progresses, we sequentially observe the durations of completed activities. By reflecting this newly available information to update the distribution of remaining activity durations and thus project duration, we can implement a decision support system that updates e.g., the expected project completion time as well as the probabilities of completing the project within the due bate and by a certain date. By implementing such customized system, project manager can be aware of changing project status more effectively and better revise resource allocation plans.
The context-awareness has become the one of core technologies and the indispensable function. for application services in ubiquitous computing environment. In this research, we incorporated the capability of context-awareness in a music recommendation system. Our proposed system consists of such components as Intention Module, Mood Module and Recommendation Module. Among these modules, the Intention Module infers whether a user wants to listen to the music or not from the environmental context information. We built the Intention Module using data mining techniques such as decision tree, support vector machine and case-based reasoning. The results showed that the case-based reasoning model outperformed the other models and its accuracy was 84.1%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.