• Title/Summary/Keyword: Decision rule

Search Result 651, Processing Time 0.026 seconds

Simple Energy Detection Algorithm for Spectrum Sensing in Cognitive Radio

  • Lee, So-Young;Kim, Eun-Cheol;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • In this paper, we propose an efficient decision rule in order to get better chance to detect the unused spectrum assigned to a licensed user and improve reliability of spectrum sensing performance. Each secondary user receives the signals from the licensed user. And the resulting signals input to an energy detector. Then, each sensing result is combined and used to make a decision whether the primary user is present at the licensed spectrum band or not. In order to make the reliable decision, we apply an efficient decision rule that is called as a majority rule in this paper. The simulation results show that spectrum sensing performance with the proposed decision rule is more reasonable and efficient than that with conventional decision rules.

Rule Selection Method in Decision Tree Models (의사결정나무 모델에서의 중요 룰 선택기법)

  • Son, Jieun;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.4
    • /
    • pp.375-381
    • /
    • 2014
  • Data mining is a process of discovering useful patterns or information from large amount of data. Decision tree is one of the data mining algorithms that can be used for both classification and prediction and has been widely used for various applications because of its flexibility and interpretability. Decision trees for classification generally generate a number of rules that belong to one of the predefined category and some rules may belong to the same category. In this case, it is necessary to determine the significance of each rule so as to provide the priority of the rule with users. The purpose of this paper is to propose a rule selection method in classification tree models that accommodate the umber of observation, accuracy, and effectiveness in each rule. Our experiments demonstrate that the proposed method produce better performance compared to other existing rule selection methods.

Parallel Code Acquisition Techniques in Chip-Asynchronous DS/SS System (직접 수열 대역 확산 통신에서 비동기 위상 서명 수열의 병렬 부호 획득 기법)

  • 오미정;윤석호;송익호;배진수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7A
    • /
    • pp.635-640
    • /
    • 2002
  • We investigate optimal and suboptimal decision rules for parallel code acquisition in chip asynchronous direct-sequence spread-spectrum systems. The conventional decision rule for parallel acquisition is to choose the largest correlator output of a receiver. However, such a scheme is optimum only for chip synchronous models. In this paper, an optimal decision rule is derived based on the maximum-likehood criterion for chip asynchronous models. A simpler suboptimal decision rule is also discussed. The performance of the optimum and suboptimum decision rules is compared to that of the conventional decision rule. Numerical results show that, for chip asynchronous models, both the optimal and suboptimal decision rules outperform the conventional decision rule.

Extraction of Hierarchical Decision Rules from Clinical Databases using Rough Sets

  • Tsumoto, Shusaku
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.336-342
    • /
    • 2001
  • One of the most important problems on rule induction methods is that they cannot extract rules, which plausibly represent experts decision processes. On one hand, rule induction methods induce probabilistic rules, the description length of which is too short, compared with the experts rules. On the other hand, construction of Bayesian networks generates too lengthy rules. In this paper, the characteristics of experts rules are closely examined and a new approach to extract plausible rules is introduced, which consists of the following three procedures. First, the characterization of decision attributes (given classes) is extracted from databases and the classes are classified into several groups with respect to the characterization. Then, two kinds of sub-rules, characterization rules for each group and discrimination rules for each class in the group are induced. Finally, those two parts are integrated into one rule for each decision attribute. The proposed method was evaluated on a medical database, the experimental results of which show that induced rules correctly represent experts decision processes.

  • PDF

Lindley Type Estimation with Constrains on the Norm

  • Baek, Hoh-Yoo;Han, Kyou-Hwan
    • Honam Mathematical Journal
    • /
    • v.25 no.1
    • /
    • pp.95-115
    • /
    • 2003
  • Consider the problem of estimating a $p{\times}1$ mean vector ${\theta}(p{\geq}4)$ under the quadratic loss, based on a sample $X_1,\;{\cdots}X_n$. We find an optimal decision rule within the class of Lindley type decision rules which shrink the usual one toward the mean of observations when the underlying distribution is that of a variance mixture of normals and when the norm $||{\theta}-{\bar{\theta}}1||$ is known, where ${\bar{\theta}}=(1/p)\sum_{i=1}^p{\theta}_i$ and 1 is the column vector of ones. When the norm is restricted to a known interval, typically no optimal Lindley type rule exists but we characterize a minimal complete class within the class of Lindley type decision rules. We also characterize the subclass of Lindley type decision rules that dominate the sample mean.

  • PDF

Development of an Efficient Decision Rule for Blood Inventory Management (효율적인 혈액 재고 관리를 위한 결정룰의 도출)

  • 서정대
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.13-27
    • /
    • 1996
  • The management of blood inventory is very important within the medical care system. The efficient management of blood supplies and demands for transfusion is of great economic and social importance to both hospitals and patients. Fro any blood type, there is a complex interaction among the optimal inventory level, daily demand level , daily supply level, transfusion to crossmatch ratio, crossmatch release period, issuing policy and the age of arriving units that determine the shortage and outdate rate. In this paper, we develop an efficient decision rule for blood inventory management in a hospital blood bank which can support efficient hospital blood inventory management using simulation, The primary use of the efficient decision rule will be to establish minimum cost function which consists of inventory levels , period in inventory, outdate and shortage rate for whole blood and various component inventories for a hospital blood bank or a transfusion service, If the adminstrator compute the mean daily demand for each blood type, the mean daily supply for each blood type, the length of the crossmatch release period and the average transfusion to crossmatch ratio , then it is possible to apply the efficient decision rule to compute the optimal inventory level, inventory period , outdate and shortage rate. This rule can also be used as a decision support system that allows the blood bank adminstrator to do sensitivity analysis related to controlled blood inventory parameters.

  • PDF

Moving object segmentation using Markov Random Field (마코프 랜덤 필드를 이용한 움직이는 객체의 분할에 관한 연구)

  • 정철곤;김중규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.221-230
    • /
    • 2002
  • This paper presents a new moving object segmentation algorithm using markov random field. The algorithm is based on signal detection theory. That is to say, motion of moving object is decided by binary decision rule, and false decision is corrected by markov random field model. The procedure toward complete segmentation consists of two steps: motion detection and object segmentation. First, motion detection decides the presence of motion on velocity vector by binary decision rule. And velocity vector is generated by optical flow. Second, object segmentation cancels noise by Bayes rule. Experimental results demonstrate the efficiency of the presented method.

A Study of Combinative Index for Conflict Resolution (상충 해결을 위한 결합지수 연구)

  • 고희병;이수홍;이만호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.319-326
    • /
    • 2000
  • Expert systems using uncertain and ambiguous knowledge are not of the recent interests about uncertainty problem for performing inference similar to the decision making of a human expert. Human factors on rule-based systems often involve uncertain information. Expert systems had been used the methods of conflict resolution in a rule conflict situation, but this methods not properly solved the rule conflict. If a human expert appends a new rule to an original rule base, the rule base rightly causes a rule conflict. In this paper, the problem of rule conflict is regarded as one in which uncertainty of information is fundamentally involved. In the reduction of problem with uncertainty, we propose an enhanced rule ordering method, which improve the rule ordering method using Dempster-Shafer theory. We also propose a combinative index, which involve human factors of experts decision making.

  • PDF

Combining Multi-Criteria Analysis with CBR for Medical Decision Support

  • Abdelhak, Mansoul;Baghdad, Atmani
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1496-1515
    • /
    • 2017
  • One of the most visible developments in Decision Support Systems (DSS) was the emergence of rule-based expert systems. Hence, despite their success in many sectors, developers of Medical Rule-Based Systems have met several critical problems. Firstly, the rules are related to a clearly stated subject. Secondly, a rule-based system can only learn by updating of its rule-base, since it requires explicit knowledge of the used domain. Solutions to these problems have been sought through improved techniques and tools, improved development paradigms, knowledge modeling languages and ontology, as well as advanced reasoning techniques such as case-based reasoning (CBR) which is well suited to provide decision support in the healthcare setting. However, using CBR reveals some drawbacks, mainly in its interrelated tasks: the retrieval and the adaptation. For the retrieval task, a major drawback raises when several similar cases are found and consequently several solutions. Hence, a choice for the best solution must be done. To overcome these limitations, numerous useful works related to the retrieval task were conducted with simple and convenient procedures or by combining CBR with other techniques. Through this paper, we provide a combining approach using the multi-criteria analysis (MCA) to help, the traditional retrieval task of CBR, in choosing the best solution. Afterwards, we integrate this approach in a decision model to support medical decision. We present, also, some preliminary results and suggestions to extend our approach.

The Construction Methodology of a Rule-based Expert System using CART-based Decision Tree Method (CART 알고리즘 기반의 의사결정트리 기법을 이용한 규칙기반 전문가 시스템 구축 방법론)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.849-854
    • /
    • 2011
  • To minimize the spreading effect from the events of the system, a rule-based expert system is very effective. However, because the events of the large-scale system are diverse and the load condition is very variable, it is very difficult to construct the rule-based expert system. To solve this problem, this paper studies a methodology which constructs a rule-based expert system by applying a CART(Classification and Regression Trees) algorithm based decision tree determination method to event case examples.