• Title/Summary/Keyword: Decision Rules

Search Result 654, Processing Time 0.021 seconds

Extraction of Hierarchical Decision Rules from Clinical Databases using Rough Sets

  • Tsumoto, Shusaku
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.336-342
    • /
    • 2001
  • One of the most important problems on rule induction methods is that they cannot extract rules, which plausibly represent experts decision processes. On one hand, rule induction methods induce probabilistic rules, the description length of which is too short, compared with the experts rules. On the other hand, construction of Bayesian networks generates too lengthy rules. In this paper, the characteristics of experts rules are closely examined and a new approach to extract plausible rules is introduced, which consists of the following three procedures. First, the characterization of decision attributes (given classes) is extracted from databases and the classes are classified into several groups with respect to the characterization. Then, two kinds of sub-rules, characterization rules for each group and discrimination rules for each class in the group are induced. Finally, those two parts are integrated into one rule for each decision attribute. The proposed method was evaluated on a medical database, the experimental results of which show that induced rules correctly represent experts decision processes.

  • PDF

A Development of Suicidal Ideation Prediction Model and Decision Rules for the Elderly: Decision Tree Approach (의사결정나무 기법을 이용한 노인들의 자살생각 예측모형 및 의사결정 규칙 개발)

  • Kim, Deok Hyun;Yoo, Dong Hee;Jeong, Dae Yul
    • The Journal of Information Systems
    • /
    • v.28 no.3
    • /
    • pp.249-276
    • /
    • 2019
  • Purpose The purpose of this study is to develop a prediction model and decision rules for the elderly's suicidal ideation based on the Korean Welfare Panel survey data. By utilizing this data, we obtained many decision rules to predict the elderly's suicide ideation. Design/methodology/approach This study used classification analysis to derive decision rules to predict on the basis of decision tree technique. Weka 3.8 is used as the data mining tool in this study. The decision tree algorithm uses J48, also known as C4.5. In addition, 66.6% of the total data was divided into learning data and verification data. We considered all possible variables based on previous studies in predicting suicidal ideation of the elderly. Finally, 99 variables including the target variable were used. Classification analysis was performed by introducing sampling technique through backward elimination and data balancing. Findings As a result, there were significant differences between the data sets. The selected data sets have different, various decision tree and several rules. Based on the decision tree method, we derived the rules for suicide prevention. The decision tree derives not only the rules for the suicidal ideation of the depressed group, but also the rules for the suicidal ideation of the non-depressed group. In addition, in developing the predictive model, the problem of over-fitting due to the data imbalance phenomenon was directly identified through the application of data balancing. We could conclude that it is necessary to balance the data on the target variables in order to perform the correct classification analysis without over-fitting. In addition, although data balancing is applied, it is shown that performance is not inferior in prediction rate when compared with a biased prediction model.

Comparative Evaluation of Multipurpose Reservoir Operating Rules Using Multicriterion Decision Analysis Techniques

  • Ko, Seok-Ku;Lee, Kwang-Man;Ko, luk-Hwan
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.65-79
    • /
    • 1993
  • Selection of the best operating rule among a set of alternatives for a multipurpose reservoir system operation requires to evaluate many minor criteria in addition to the major objectives assessed to the system. These problems are sufficiently complex and difficult that they are beyond heuristic decision rules and experiences in case several noncommensurable multiple criteria are included in the evaluation. With the assistance of multicriterion decision analysis techniques, it is possible to select the best one among various alternatives by systematically comparing and ranking the alternatives with respect to the criteria of choice. Evaluation criteria for multipurpose reservoir system operating rules were identified and defined, and the multicriterion decision analysis techniques were applied to evaluate the four existing operating rules of the Chungju multipurpose project according to the identified nine multiple criteria. The application results show that the methodology is very efficient to select the best operation alternative among a finite number of operating rules with many evaluation criteria for a large-scale reservoir system operation.

  • PDF

Determination of the Input/Output Relations and Rule Generation for Fuzzy Combustion Control System of Refuse Incinerator using Rough Set Theory (Rough Set 이론을 이용한 쓰레기 소각로의 퍼지제어 시스템을 위한 입출력 관계 설정 및 규칙 생성)

  • 방원철;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.81-86
    • /
    • 1997
  • It is proposed, for fuzzy combustion control system of refuse incinerator to find the relationship between inputs and outputs and to generate rules to control by using rough set theory. It is not easy to find out the corresponding inputs for each output and the control rules with incomplete or imprecise information consisting expert knowledge, process and manipulator values in the field, and operation manual for the given system. Most decision problems can be formulated employing decision table formalism. A decision table on fuzzy combustion control system for refuse incinerator is simplified and produces control(rules). The I/O realtions and the control rules found by rough set theory are compared with the previous result.

  • PDF

Lindley Type Estimation with Constrains on the Norm

  • Baek, Hoh-Yoo;Han, Kyou-Hwan
    • Honam Mathematical Journal
    • /
    • v.25 no.1
    • /
    • pp.95-115
    • /
    • 2003
  • Consider the problem of estimating a $p{\times}1$ mean vector ${\theta}(p{\geq}4)$ under the quadratic loss, based on a sample $X_1,\;{\cdots}X_n$. We find an optimal decision rule within the class of Lindley type decision rules which shrink the usual one toward the mean of observations when the underlying distribution is that of a variance mixture of normals and when the norm $||{\theta}-{\bar{\theta}}1||$ is known, where ${\bar{\theta}}=(1/p)\sum_{i=1}^p{\theta}_i$ and 1 is the column vector of ones. When the norm is restricted to a known interval, typically no optimal Lindley type rule exists but we characterize a minimal complete class within the class of Lindley type decision rules. We also characterize the subclass of Lindley type decision rules that dominate the sample mean.

  • PDF

Rule Induction Considering Implication Relations Between Conclusions

  • Inuiguchi, Masahiro;Inoue, Masanori;Kusunoki, Yoshifumi
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • In rough set literatures, methods for inducing minimal rules from a given decision table have been proposed. When the decision attribute is ordinal, inducing rules about upward and downward unions of decision classes is advantageous in the simplicity of obtained rules. However, because of independent applications of the rule induction method, inclusion relations among upward/downward unions in conclusion parts are not inherited to the condition parts of obtained rules. This non-inheritance may debase the quality of obtained rules. To ensure that inclusion relations among conclusions are inherited to conditions, we propose two rule induction approaches. The performances of the proposed approaches considering the inclusion relations between conclusions are examined by numerical experiments.

A Design of the Decision Maker of ECG Using the Intellegent Control System (지능 제어 시스템을 이용한 심전도 판단자 설계)

  • 김민수;김상득;구자헌;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.207-210
    • /
    • 2001
  • This Paper presents a design of the fuzzy decision maker analyzable of output result of ECG signals. The fuzzy decision maker proposed are divided into two groups whose functions are different each other. The one rules when decision of heart rates, The other decision values for an interval of each points of waveform using of which static state values and abnormal values. We have chosen several variable used for composing condition and action part by knowledge of an Expert The result of outputs with fuzzy rules suggested was a proved of satisfied with by classify ECG arrythmia signals

  • PDF

Analyzing the Location Decision of the Large-Scale Discount Store Using the Spatial Association Rules Mining (공간 연관규칙을 이용한 대형할인점의 입지 분석)

  • Lee Yong-Ik;Hong Sung-Eon;Kim Jung-Yup;Park Soo-Hong
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.3 s.114
    • /
    • pp.319-330
    • /
    • 2006
  • The objective of this research is to achieve an objectivity of site decision after extracting site decision factors on a large-scale discount store(LSDS) and utilize any hidden information using the association rules mining through huge database. To catch this objective, we collect a census, economic, and environmental dataset related with locating of LSDS. And then, we construct a spatial data on the research area. These data is used for the extraction of a spatial association rules. To verify whether the extracted rules are suitability or not, we use the sales of some LSDS. As the result of test, the more sales, the more factors of the extracted rules relate with the sales it coincides. Consequently, the spatial association rules mining is efficient method which support the ideal site decision of LSDS.

A Study on Decision Rules for Qi·Blood·Yin·Yang Deficiency Pathogenic Factor Based on Clinical Data of Diagnosis System of Oriental Medicine (한방진단설문지 임상자료에 근거한 기혈음양 허증병기 의사결정규칙 연구)

  • Soo Hyung Jeon;In Seon Lee;Gyoo yong Chi;Jong Won Kim;Chang Wan Kang;Yong Tae Lee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.37 no.6
    • /
    • pp.172-177
    • /
    • 2023
  • In order to deduce the pathogenic factor(PF) diagnosis logic of underlying in pattern identification of Korean medicine, 2,072 cases of DSOM(Diagnosis System of Oriental Medicine) data from May 2005 to April 2022 were collected and analyzed by means of decision tree model(DTM). The entire data were divided into training data and validation data at a ratio of 7:3. The CHAID algorithm was used for analysis of DTM, and then validity was tested by applying the validation data. The decision rules of items and pathways determined from the diagnosis data of Qi Deficiency, Blood Deficiency, Yin Deficiency and Yang Deficiency Pathogenic Factor of DSOM were as follows. Qi Deficiency PF had 7 decision rules and used 5 questions: Q124, Q116a, Q119, Q119a, Q55. The primary indicators(PI) were 'lack of energy' and 'weary of talking'. Blood deficiency PF had 7 decision rules and used 6 questions: Q113, Q84, Q85, Q114, Q129, Q130. The PI were 'numbness in the limbs', 'dizziness when standing up', and 'frequent cramps'. Yin deficiency PF had 3 decision rules and used 2 questions: Q144 and Q56. The PI were 'subjective heat sensation from the afternoon to night' and 'heat sensation in the limbs'. Yang deficiency PF had 3 decision rules and used 3 questions: Q55, Q10, and Q102. The PI were 'sweating even with small movements' and 'lack of energy'. Conclusively, these rules and symptom information to decide the Qi·Blood·Yin·Yang Deficiency PF would be helpful for Korean medicine diagnostics.

A New Decision Tree Algorithm Based on Rough Set and Entity Relationship (러프셋 이론과 개체 관계 비교를 통한 의사결정나무 구성)

  • Han, Sang-Wook;Kim, Jae-Yearn
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • We present a new decision tree classification algorithm using rough set theory that can induce classification rules, the construction of which is based on core attributes and relationship between objects. Although decision trees have been widely used in machine learning and artificial intelligence, little research has focused on improving classification quality. We propose a new decision tree construction algorithm that can be simplified and provides an improved classification quality. We also compare the new algorithm with the ID3 algorithm in terms of the number of rules.