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Abstract. In rough set literatures, methods for inducing minimal rules from a given decision table have been 
proposed. When the decision attribute is ordinal, inducing rules about upward and downward unions of decision 
classes is advantageous in the simplicity of obtained rules. However, because of independent applications of the 
rule induction method, inclusion relations among upward/downward unions in conclusion parts are not inherited 
to the condition parts of obtained rules. This non-inheritance may debase the quality of obtained rules. To ensure 
that inclusion relations among conclusions are inherited to conditions, we propose two rule induction approaches. 
The performances of the proposed approaches considering the inclusion relations between conclusions are 
examined by numerical experiments. 
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1.  INTRODUCTION 

From a given data table, we may induce rules by 
various methods (for example, see Wikipedia Rule In-
duction). Among those rule induction methods, we fo-
cus on rough set based rule induction (Pawlak, 1991). 
In the rough set based rule induction, methods for in-
ducing minimal rules from a given decision table have 
been pro-posed. A decision table is a collection of ob-
jects expressed by combinations of profiles and deci-
sion classes. The profiles are composed of conditions 
on explanatory variables called condition attributes. 
Some data are inconsistent one another so that two or 
more objects having the same profiles are classified 

into different decision classes. Such inconsistencies are 
processed by approximation operations so that the 
lower approximation of a decision class includes only 
objects consistent with others while the upper approxi-
mation of a decision class includes its original members 
and their conflicting members. Those approximations 
are consistent in the sense that there is no conflict with 
their complements. 

Using the approximations, rough set rule induction 
can be seen as a procedure to find the minimal condi-
tions separating members of an approximation from 
non-members. As such algorithms, LEM2-based algo-
rithms were proposed under many situations. These al-
gorithms do not induce all decision rules underlying in 
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the given decision table but induce a minimal set of 
rules by which all members are explained. The original 
LEM2 proposed by Grzymala-Busse (1992) induces rules 
from a given decision table when all attributes are no-
minal. Then Grzymala-Busse (2003) proposed MLEM2 
in order to treat a case when some of condition attrib-
utes are ordinal (numerical). Stefanowski (1988) previ-
ously proposed MODLEM for the same purpose. Greco 
et al. (2002) proposed DOMLEM in order to treat a case 
when the monotonicity between ordinal condition at-
tributes and an ordinal decision attribute is supposed. 
The dominance-based rough set approach (DRSA) (Greco 
et al., 1998; Greco et al., 1999; Greco et al., 2001) is 
used for the underlying rough set model of DOMLEM. 
In this paper, MLEM2 is used as rule induction algo-
rithm but the proposed idea can be applied to any rule 
induction algorithms. 

We consider a case when some of condition at-
tributes and the decision attribute are ordinal. Because 
of the ordinal property of the decision attribute, it is 
advantageous in the sense of simplicity of the obtained 
rules to induce rules with respect to upward and down-
ward unions of decision classes than to induce rules 
with respect to decision classes directly. Following the 
conventional approach, we may apply MLEM2 to in-
duce rules with respect to upward and downward un-
ions of decision classes, independently.  

We note that, when conclusions of rules include 
upward or downward unions of decision classes, two of 
them may have the inclusion relations. For example, 
considering rules for “not less than 2” and rules for 
“not less than 1”, conclusion “not less than 1” includes 
conclusion “not less than 2”. When decision rules are 
induced independently, it may happen that the inclusion 
relations are not inherited in the premises. This non-
inheritance may debase the quality of obtained rules. 

Considering this non-inheritance, in this paper, we 
proposed two methods to inherit the inclusion relations 
among the conclusions to the premises of decision rules. 
One is the refining approach and the other is the coars-
ening approach. Because we may apply different ap-
proaches to upward and downward unions, we consider 
four combinations. By numerical experiments with da-
tasets showing hill structures, these four combinations 
and the conventional approach are compared in the 
classification accuracy of the induced set of rules. Mo-
reover, we further extend the proposed approach to 
datasets showing mixed-case of hill and valley struc-
tures. We would observe that the same results when the 
standard decision attribute value is known.  

This paper is organized as follows. In section 2, 
rough set approaches to rule induction are briefly re-
viewed. The proposed approaches considering the im-
plication relations between conclusions of rules are 
explained in section 3. In section 4, the results of nu-
merical experiments are described. Concluding remarks 

are given in section 5. 

2.  ROUGH SET BASED RULE 
INDUCTION 

2.1 Decision Tables 

In the rough set theory, decision tables showing 
object features are analyzed. A decision table is for 
mally characterized by a quadruple , { }, ,S U C d V f= ∪ , 
where U is a finite set of objects, C is a finite set of 
condition attributes, d∉C is a unique decision attribute, 

{ }a C d aV V∈ ∪= ∪  is a set of attribute values, Va is a set of 
values with respect to attribute a and f: U×C ∪{d} → V 
is a total function called an information function. Ob-
jects in a decision table are classified by their decision 
attribute values into decision classes Cli, i = 1, 2, …, p. 
We assume that each attribute is nominal or ordinal. 
Values of a nominal attribute are considered labels and 
used to distinguish objects. Therefore, there is neither 
order relation between nominal attribute values nor the 
magnitude of the difference. On the other hand, values 
of an ordinal attribute are assumed to be totally ordered, 
however a magnitude of their difference is meaningless.  

2.2 Decision Rules and Rough Sets 

A decision rule is an if-then rule composed of a 
premise and a conclusion. It is described as “IF prem-
ise THEN conclusion.” The premise of a decision rule 
is expressed as a conjunction of elementary conditions. 
The elementary condition is represented as ‘f(a, x) = v’ 
(v∈Va) for a nominal condition attribute a while it is 
represented as ‘f(a, x) ≥ vL’ or ‘f(a, x) < vR’ (vL, vR∈Va) 
for an ordinal/numerical condition attribute a. The con-
clusion is represented as ‘x∈Cli’ or ‘ i ix Cl∈∪ ’ in this 
paper. Decision rules are induced based on objects in 
the given table by generalizing their conditions. A deci-
sion rule is simply called a rule if there is no confusion.  

When a given decision table includes at least two 
objects which share the same condition attribute values 
but take different decision attribute values, those ob-
jects are inconsistent. In this case, we cannot induce 
exact rules corresponding to those objects. Then we 
apply the rough set theory (Pawlak, 1982; Pawlak, 1991). 
In the rough set theory, the inconsistency is treated rea-
sonably by lower and upper approximations of decision 
classes. 

Now let us introduce lower and upper approxima-
tions. First, we define an equivalence class of an object 
x with respect to C by 

 
[ ] { : ( , ) ( , ), }Cx y U f y a f x a a C= ∈ = ∀ ∈ .   (1) 

 
Then lower and upper approximations of Cli are de-

fined by 
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*( ) { : [ ] }i C iC Cl x U x Cl= ∈ ⊆ ,   (2) 
*( ) { : [ ]  }i C iC Cl x U x Cl φ= ∈ ∩ ≠ .  (3) 

 
The pair (C*(Cli), C*(Cli)) is called a rough set of Cli. 

The lower approximation of a decision class in-
cludes only consistent objects while the upper approxi-
mation includes possible objects. Then objects in lower 
approximations as well as those in upper approxima-
tions are consistent in the sense that there is no conflict 
between members and nonmembers.  

When the given decision table includes inconsis-
tent objects, we induce rules with respect to Cli. (resp. 

i iCl∪ ) based on objects in its lower approximation 
C*(Cli) (resp. ( )* i iC Cl∪ ) or those in its upper approxi-
mation C*(Cli) (resp. ( )*

i iC Cl∪ ). Rules induced based 
on lower approximations are called certain rules while 
rules induced based on upper approximations are called 
possible rules. In this paper, we focus on certain rules.  

2.3 Rule Induction Algorithm 

In this paper, we study methods for inducing rules 
whose premises reflect the implication relations be-
tween conclusions. We use MLEM2 proposed by Grzy-
mala-Busse (2003) as the fundamental rule induction 
algorithm. The algorithm of MLEM2 is shown in Fig-
ure 1. First, a target decision class or a set of decision 
classes is approximated by the manner of rough set  

 
Input: a set B
Output: a single local covering T of B

1: T := ∅;
2: G := B;
3: while G �= ∅ do
4: T := ∅; T (G) := {t | [t] ∩G �= ∅};
5: while T = ∅ or [T ] �⊆ B do
6: † select t ∈ T (G) with the highest priority, if a

tie occurs, select t ∈ T (G) such that |[t] ∩ G| is
maximum; if another tie occurs, select t ∈ T (G)
with smallest cardinality of [t]; if a further tie occurs,
select a first one;

7: T := T ∪ {t};
8: G := [t] ∩G;
9: T (G) := {t | [t] ∩G �= ∅};

10: T (G) := T (G)− T ;
11: end while
12: for each t in T do
13: if [T − {t}] ⊆ B then
14: T := T − {t};
15: end if
16: end for
17: T := T ∪ {T};
18: G := B −⋃

T∈T[T ];
19: end while
20: for each T in T do
21: if

⋃
S∈T−{T}[S] = B then

22: T := T− {T};
23: end if
24: end for  

 Figure 1. Algorithm of MLEM2. 

theory. In this algorithm, B is the input and it is defined 
by a lower approximation or an upper approximation of 
a certain class or a union of classes. The algorithm out-
puts T, a minimal set of minimal rules. The minimal set 
of decision rules means that there exists no redundant 
rule in itself. On the other hand, the minimal rule 
means there exists no redundant condition in its prem-
ise. The algorithm is based on the sequential covering 
method (Fürnkranz, 1999) equipped with the general to 
specific search (Hoover and Perez, 1999). 

The algorithm iteratively adds the best condition 
in a given greedy criterion until objects satisfying all 
conditions belong to B, and removes those objects from 
target set G. Redundant conditions are removed at first 
screening process at lines 12 to 16. Taking a conjunc-
tion of remaining conditions, a rule having the conjunc-
tion as its premise is induced. This iteration written 
from line 3 to line 19 of Figure 1 repeats until G be-
comes empty. The greedy criterion is lexicographical as 
specified at line 6. From the first criterion, a condition 
satisfied with the most objects in target set G is selected. 
This can be seen as a general to specific search. The 
lines 20 to 24 are the second screening process which 
removes redundant rules. 

2.4 Upward and Downward Unions 

In the real world, the decision attribute is often or-
dinal. In evaluation problems, for example, we may 
rank objects into three classes, i.e., bad, medium and 
good. In this case, we presume an order bad  me-
dium  good. Namely class ‘bad’ is worse than class 
‘medium,’ class ‘medium’ is worse than class ‘good’ 
and the transitivity is naturally assumed.  

When the decision attribute is ordinal, inducing 
decision rules with respect to upward and downward 
unions is more advantageous in the simplicity and ap-
plicability than inducing decision rules with respect to 
decision classes. Under an order Cl1  Cl2  …  
Clp, the upward union tCl≥  and tCl≤  are defined by 

 
t i t iCl Cl≥

≥= ∪ , t i t iCl Cl≤
≤= ∪ .  (4) 

 
The induction of decision rules with respect to 

upward and downward unions can be done in the same 
way as that with respect to decision classes. However, 
because of independent applications of a rule induction 
algorithm such as MLEM2, the inclusion relations such 
as t sCl Cl≥ ≥⊆  and t sCl Cl≤ ≤⊇  for t > s would not be re-
flected in the induced rules.  

3.  PROPOED APPROACHES 

3.1 Refining Approach 

Let X and Y be conclusions of rules and X imply Y. 
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This approach is based on the idea that the premises of 
rules with X should be stronger than the premises of 
rules with Y. To crystallize this idea, after inducing all 
rules having conclusion Y, rules having conclusion X 
are induced by refining the premises of rules having 
conclusion Y. In MLEM2, we may realize this approach 
by the following changes: (1) we replace “T := ∅”; by 
“T := T'; G := [T]∩G;” at line 4 of Figure1, where T' is 
the premise of a rule with Y. (2) Before this command, 
we should select T' from premises of all rules with Y by 
the same criterion described at line 6. (3) Moreover we 
must modify the screening of T so that we maintain the 
relation that T implies T'.  

3.2 Coarsening Approach 

In contrast to the refining method, this method is 
based on the idea that the premises of rules with Y 
should be weaker than the premises of rules with X 
when X implies Y. To crystallize this idea, after induc-
ing all rules having conclusion X, rules having conclu-
sion Y are induced by coarsening the premises of rules 
having conclusion X. In MLEM2, we may realize this 
approach by the following changes: (1) we replace 
“T(G) := {t | [t]∩ G}” by “T(G) := {t | [t]∩ G, T' im-
plies t }” at lines 4 and 9 of Figure 1, where T' is the 
premise of a rule with X. (2) Moreover we must modify 
the screening of T so that we maintain the relation that 
for each rule with X, there exists at least one rule with Y 
whose premise is implied by the premise of the rule 
with X.  

3.3 Combinations of Approaches for Upward and 
Downward Unions 

In the previous subsection, we have described rule 
induction approaches to upward/downward unions. How-
ever, we have not yet mentioned about the rule induc-
tion approaches to obtain both rules with respect to 
upward unions and rules with respect to downward 
unions. Unless both rules with respect to upward un-
ions and rules with respect to downward unions are 
induced, we would not infer the membership to deci-
sion class from condition attribute values of a new ob-
ject with a sufficient accuracy. In this paper, we con-
sider four combinations of three approaches described 
in the previous subsection. The four combinations are 
shown in Table 1.  

 
Table 1. Four possible combinations 

Comb. Upward unions Downward unions 

CA1 Refining approach Refining approach 
CA2 Refining approach Coarsening approach 
CA3 Coarsening approach Refining approach 
CA4 Coarsening approach Coarsening approach 

As shown in Table 1, the first combined approach, 
CA1 uses the refining approach to both rule induction 
with respect to upward and downward unions. The se-
cond combined approach, CA2 uses the refining ap-
proach to rule induction with respect to upward unions 
and the coarsening approach to rule induction with re-
spect to downward unions. The third combined ap-
proach, CA3 is the opposite to CA2 and uses the coars-
ening approach to rule induction with respect to upward 
unions and the refining approach to rule induction with 
respect to downward unions. The fourth combined ap-
proach, CA4 uses the coarsening approach to both rule 
induction with respect to upward and downward unions.  

3.4 Application of Induced Rules to New Objects 

Once we obtain rules with respect to upward un-
ions as well as those with respect to downward unions, 
we can use those rules to classify a new object into a 
decision class. However, due to the lack of the compre-
hensiveness and total consistency of data in a given 
decision table, induced rules are often imperfect. They 
would have some conflicts, inapplicabilities and indeci-
siveness. Therefore, we propose a classification algo-
rithm to resolve those difficulties so that we estimate a 
single class in which the new object may be included. 
The resolution algorithm consists of two steps. 

First, for t = 2, …, p we decide whether the new 
object x is classified into tCl≥  or 1tCl≤−  using evalua-
tion measures ( )tEM Cl≥ and 1( )tEM Cl≤− , defined by  

 
( ) ( )t s

s t

EM Cl Supp Cl≥ ≥

≥

= ∑ ,   (5) 

1
1

( ) ( )t s
s t

EM Cl Supp Cl≤ ≤
−

≤ −

= ∑ ,   (6) 

 
where Supp(X) is a measure called support defined by 

 

matching rules
 inferring 

( )  ( )  ( )
r X

Supp X Strength r Specificity r= ×∑  (7) 

 
Strength(r) proposed in LERS (1992) is the total num-
ber of objects in the given decision table correctly clas-
sified by rule r while Specificity(r) is the total number 
of conditioned attribute variables in the premise of rule 
r. If ( )tEM Cl≥  ≥ 1( )tEM Cl≤−  then object x is classified to 

tCl≥ ; otherwise to 1tCl≤− . However, it could happen that 
there is no rule inferring { } ,   sCl s t≥ ≥  or { } ,   sCl s t≤ <  
and matching to x, namely, ( )tEM Cl≥ = 1( )tEM Cl≤− = 0. In 
this case, we use auxiliary evaluation measures 'EM  
( )tCl≥  and 1'( )tEM Cl≤− , defined by  

 
'( ) ( )t s

s t

EM Cl M Cl≥ ≥

≥

= ∑ ,   (8) 

1
1

'( ) ( )t s
s t

EM Cl M Cl≤ ≤
−

≤ −

= ∑ ,   (9) 

 
where M(X) is defined by 
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partially matching 
rules  inferring 

( )  ( ) 

                        ( ) ( )
r X

Supp X Matching_factor r

Strength r Specificity r

=

× ×

∑
 (10) 

And Matching_factor(r) is defined by the ratio of ma-
tched elementary conditions to all elementary condi-
tions of rule r. If '( )tEM Cl≥ ≥ 1'( )tEM Cl≤−  then x is classi-
fied into tCl≥ ; otherwise 1tCl≤− .   

Second, we aggregate results in the first step. We 
adopt a majority voting. If x is classified into tCl≥ (and 
not into 1tCl≤− ) in the first step, then all of Clt, Clt+1, …, 
Clp get a vote. On the other hand, if x is classified into 

1tCl≤−  in the first step, then all of Cl1, Cl2, …, Clt-1 get a 
vote. Then x is finally classified into a decision class 
receiving the highest number of votes. If a tie occurs, it 
is broken by a random selection among tied classes. For 
example, there exist four classes Cl1, Cl2, Cl3 and Cl4, 
and a new object x is classified into 2 3,Cl Cl≥ ≥ , and 4Cl≤  
in the first step, then the numbers of votes for Cl1, Cl2, 
Cl3 and Cl4 become 1, 2, 3 and 2, respectively. Conse-
quently, x is classified into Cl3.  

4.  NUMERICAL EXPERIMENTS 

4.1 Outline 

In order to examine the performances of the pro-
posed approaches, we executed numerical experiments. 
We compare the proposed approaches with the conven-
tional approach in MLEM2, i.e., independent applica-
tions of MLEM2 to each of upward and downward 
unions. We apply the proposed approaches as well as 
the conventional approach to a set of training data. We 
then evaluate the performance of the obtained set of 
rules by a set of checking data. The performance is 
measured by classification accuracy, i.e., the rate of 
objects correctly classified, to all checking data.  

To execute the experiments, we need dataset suit-
able for proposed approaches. However, unfortunately, 
it is not very easy to obtain such dataset from the public 
domain, even though we often to come across them in 
the real world. Then we artificially generate datasets.  

The experiments are made by two stages. In the 
first stage, we examined the proposed approaches in 
hill-structured datasets such that several mountains exist 
on the hyperplane. By the experiments of such datasets, 
we may find some inclinations of the proposed ap-
proaches. Then in the second stage, we examined the 
proposed approaches in hill-valley-structured datasets 
such that both mountains and valleys exist on the hy-
perplane. By the second stage experiments, we may 
confirm the findings of the first stage experiments.  

4.2 Experiments by Hill-structured Dataset 

4.2.1 Dataset Generation 
 
To obtain the hill-structured dataset, we randomly 

generate hyper rectangles H1 ⊇ … ⊇ Hp, where p is a 
given number of decision class and Ht, t = 1, …, p are 
subsets of the Cartesian product of attribute value sets 
of condition attributes. We then regard a point in the 
Cartesian product as the profile (condition attribute 
values) of an object. The decision class Clt is composed 
of points in Ht−Ht-1, where, for convenience, we define 
H0 = ∅. Several sequences of hyper rectangles Hj1 ⊇ 
… ⊇ Hjp, j = 1, …, q are independently generated. 
Then some hyper rectangles of different sequences may 
have intersections. The decision attribute value of an 
object x in an intersection is determined by the largest 
value t among Hjt’s such that x ∈ Hjt. Figure 2 shows an 
example of the nested structure when |C| = 2 and p = 4. 
In Figure 2, the decision attribute takes four values, ◎, 
○, △ and × which are ordered as ×  △  ○ 

 ◎.  
 

 
Figure 2. An example of hill structure. 

 
We generate all points in Hj1, j = 1, …, q and col-

lect pairs of condition attribute values and the decision 
attribute value of them and build a dataset. The set of 
training data are composed of sampled data from the 
dataset and the checking data are composed of the re-
maining data.  

 
4.2.2 Results and Discussion 

Results in four decision tables (datasets) which 
vary in numbers of condition attributes and numbers of 
its values are shown in Table 2∼Table 5. All decision 
tables have four ordered decision classes and three se-
quences of hyper rectangles. All condition attributes in 
each decision table are ordered. We executed the ex-
periments with several different sampling rates for 
training data. The sampling rates are 1%, 2%, …, 8%, 
9%. In each table, row ‘Rate’ shows the sampling rates 
and row ‘ML’ indicates the results of the conventional 
approach based on MLEM2, i.e., the independent ap-
plications to upward/downward unions. Rows ‘CA1,’ 
‘CA2,’ ‘CA3’ and ‘CA4’ show results of the proposed 
approaches of Table 1. 
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In Table 2∼Table 5, the classification accuracy is 
calculated by using checking data. We prepare 100 
different sets of training data for each sampling rate. 
We conducted 100 experiments for each proposed ap-
proach at a sampling rate. Each entry of Tables shows 
the average ave and the standard deviation dev in the 
form of ave ± dev. Mark * implies that the average of 
the accuracy of the proposed approach is not signifi-
cantly different from that of MLEM2 by the paired t-
test with significance level α = 0.05. 

From Table 2∼Table 5, CA2 is significantly better 
than ML for all sampling rates. However, CA1, CA3 
and CA4 are worse than or equal to ML, especially 
CA3 is significantly worse than ML. CA2 is better than 
CA1 and CA4 is better than CA3 at averages of accu-
racy. Note that CA2 and CA4 use the alleviating ap-
proach to downward unions while CA1 and CA3 apply 
the refining approach. Moreover, CA2 is better than 
CA4 and CA1 is better than CA3. CA2 and CA1 use 

refining approach to upward unions. Combining this 
observation with the data generation in the experiments, 
alleviating approach seems to be good for reverse-hill/ 
reverse-valley structures, where a reverse-hill (resp. re-
verse-valley) structure is a structure composed of com-
plements of upward (resp. downward) unions when up-
ward (resp. downward) unions form a hill (resp. valley) 
structure. Moreover, refining approach seems to be good 
for hill/valley structures. 

4.3 Experiments by Hill-Valley-structured Dataset 

4.3.1 Dataset Generation 
To obtain the hill-valley-structured dataset, we 

randomly generate several sequence of hyper rectangles 
Hl, l = t, t+1, …, p on condition attribute space a C aV∈×  
having a hill structure Ht ⊇ Ht+1 ⊇ … ⊇ Hp and Hl, l = 
1, 2, …, t having a valley structure Ht ⊇ Ht-1 ⊇ … ⊇ 
H1 (see Figure 3). 

Table 2. Classification accuracy when |C| = 5, |Va| = 4, p = 4 and 3 sequences of hyper rectangle. 

Rate 1% 2% 3% 4% 5% 6% 7% 8% 9% 
ML 34.2±7.3 43.3±7.7 51.2±6.4 55.6±7.5 61.0±7.2 65.7±5.8 67.1±6.1 70.2±6.1 73.1±6.4
CA1 32.9±7.2 42.3*±7.2 50.5*±7.3 54.0±7.5 59.1±6.6 63.1±6.1 65.6±6.7 68.6±6.2 71.7±6.3
CA2 34.0*±8.0 43.8*±8.1 53.6±7.5 56.6*±7.4 61.7*±6.3 66.4*±6.1 68.2±6.5 70.4*±5.8 73.5*±5.9
CA3 32.4±6.6 41.3±7.0 47.5±6.9 51.4±6.8 56.2±6.9 61.4±6.6 64.1±6.9 67.3±6.8 69.3±6.9
CA4 33.5*±6.9 41.4±6.5 48.9±7.0 52.6±6.5 57.9±6.8 62.4±6.8 65.6±7.1 68.3±6.8 70.3±6.9

 
Table 3. Classification accuracy when |C| = 5, |Va| = 5, p = 4 and 3 sequences of hyper rectangle. 

Rate 1% 2% 3% 4% 5% 6% 7% 8% 9% 
ML 48.1±8.3 64.1±8.1 76.7±6.5 83.2±5.8 88.2±4.9 92.7±4.3 95.6±3.0 96.6±2.6 97.3±2.5
CA1 47.7*±9.0 64.1*±10.0 76.3±8.4 83.3*±6.8 89.4±5.2 93.1*±4.5 95.9*±3.4 97.0*±2.5 97.9±2.4
CA2 49.4*±9.7 67.5±9.0 80.5±8.3 86.9±6.4 92.1±5.5 96.0±3.9 97.8±2.9 98.6±2.1 98.9±1.8
CA3 46.7±9.5 61.5±10.0 73.8±8.5 81.4±7.1 87.6*±5.7 91.9±5.1 95.2*±3.6 96.6*±3.1 97.6*±2.9
CA4 47.2*±9.5 64.5±10.2 77.3*±7.8 84.6±7.0 90.2±5.5 94.3±4.6 96.9±3.5 98.1±2.6 98.6±2.2

 
Table 4. Classification accuracy when |C| = 6, |Va| = 4, p = 4 and 3 sequences of hyper rectangle. 

Rate 1% 2% 3% 4% 5% 6% 7% 8% 9% 
ML 47.1±6.8 65.2±6.9 76.6±5.9 85.7±4.9 90.6±4.0 93.6±4.0 96.0±2.6 97.9±2.1 98.4±1.7
CA1 46.9*±7.3 62.9±7.6 74.3±7.5 83.9±5.3 88.8±4.8 92.0±3.7 94.6±2.8 96.6±2.8 97.7±2.2
CA2 51.2±8.8 68.4±8.2 81.6±7.3 90.5±5.7 94.1±4.1 96.7±3.1 98.1±2.1 99.2±1.2 99.5±0.9
CA3 43.7±6.9 58.6±7.6 69.7±6.7 81.2±6.6 86.8±5.7 90.8±5.1 93.7±3.4 96.4±3.1 97.3±2.4
CA4 46.8*±7.9 62.7±8.1 75.7*±7.0 86.4*±6.9 91.6±5.2 94.9±4.5 97.1±3.3 98.9±1.7 99.1±1.5

 
Table 5. Classification accuracy when |C| = 6, |Va| = 5, p = 4 and 3 sequences of hyper rectangle. 

Rate 1% 2% 3% 4% 5% 6% 7% 8% 9% 
ML 72.1±4.9 86.8±3.6 92.7±2.3 95.5±1.6 96.9±1.2 97.8±0.9 98.6±0.7 98.8±0.6 99.1±0.6
CA1 70.7±5.8 85.5±3.7 91.8±2.7 94.9±1.8 96.6±1.5 97.6*±1.2 98.3±0.9 98.6±0.8 98.9±0.7
CA2 74.5±6.2 88.1±3.2 93.8±2.2 96.1±1.6 97.5±1.3 98.3±1.0 99.0±0.6 99.2±0.6 99.4±0.5
CA3 65.1±5.3 82.1±4.2 89.6±2.8 93.4±2.0 95.2±1.6 96.5±1.3 97.7±1.0 98.1±0.8 98.5±0.8
CA4 68.1±5.4 84.0±3.8 91.2±2.5 94.5±1.8 95.9±1.5 97.1±1.2 98.3±0.8 98.6±0.7 98.8±0.6
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Figure 3. An example of hill-valley structure. 

 
Then we define the decision attribute values by 

rules “if x∈Hi and x∉Hi+1 then decision attribute value 
of x is vi” for Hi ⊇ Hi+1 and “if x ∈ Hi and x ∉ Hi-1 then 
decision attribute value of x is vi” for Hi ⊇ Hi-1. Here 
we assume that v1 ≤ v2 ≤ … ≤ vp, H0 = Hp+1 = ∅ and 

a C aV∈× ⊆ ℵm (ℵ is a set of natural numbers) is finite. 
When x satisfies conditions of multiple rules, the deci-
sion attribute value is determined in the following pro-
cedure: (a) If x satisfies conditions of rules from hill 
structures, the largest value vmax among vi’s in their 
conclusions is calculated. (b) If x satisfies conditions of 
rules from valley structures, the smallest value vmin 
among vi’s in their conclusions is calculated. (c) If one 
of vmax and vmin is not calculated, the decision attribute 
value of x is defined by the calculated one. (d) Other-
wise, we consider the latest fired rule. If the rule is de-
fined from a hill structure, we adopt vmax for the deci-
sion attribute value of x, and otherwise we adopt vmin. 

 
4.3.2 Approach Based on the First Stage Results 

In the first stage experiments, we observed that the 
best combination adopts the refining approach for hill/ 
valley structures and adopts the coarsening approach 
for reverse-hill/reverse-valley structures of given data-
set. From this observation, for dataset with more gen-
eral structure, the following approach to rule induction 
with respect to upward unions is conceivable. (0) we 
select the standard value t ∈{1, 2, …, p}, appropriately. 
(1) we induce rules with respect to tCl≥  using MLEM2, 
(2) we induce rules with respect to 1tCl≥+ , …, pCl≥  by 
the refining approach, and (3) we induce rules with 
respect to 1tCl≥− , …, 2Cl≥  using the coarsening approach. 

To rule induction with respect to downward un-
ions, the similar approach is conceivable under the 
standard value t ∈{1, 2, …, p} is selected. (1) we in-
duce rules with respect to tCl≤  using MLEM2, (2) we 
induce rules with respect to 1tCl≤+ , … , 1pCl≤−  by the 
coarsening approach, and (3) we induce rules with re-
spect to 1tCl≤− , …, 1Cl≤  using the refining approach. 

This approach is the mixture of refining and coar-
sening approaches and called the standard value swit-
ching approach. In the second stage experiments, in 
order to confirm the correctness of the observation, we 
compare the standard value switching approach with 
four combinations described in Table 1 and the conven-
tional approach when the standard value t is known. 
The estimation of the standard value t remains for our 
future research. 

 
4.3.3 Results and Discussion 

We generated 40 datasets varying the numbers of 
condition attribute values and the number of decision 
classes. Both numbers of condition attributes and se-
quences of hyper rectangle are fixed as 4. Two of the 
sequences are hill-structured sequences while the other 
two sequences are valley-structured sequences. All 
condition attributes are assumed to be ordinal. 

Training data are selected by random sampling 
from the generated datasets. The sampling size is de-
termined by the ratio to the number of data in the gen-
erated dataset. Different ratios are considered. They are 
1%, 2%, …, 9%, 10%, 20%, …, 70%, more con-
cretely, the sample size is determined by [(ratio)× (the 
size of a dataset)], where [r] means the largest integer 
not greater than r. 

One hundred different training data sets were pre-
pared for each sampling size and for each data set. 
Then, we conducted 100 experiments using those train-
ing data sets. From each experiment, we calculated the 
classification accuracy using the checking data set. 
Moreover, we recorded the number of induced rules 
and the average length (the average number of condi-
tion attributes) of conditions in the premises of induced 
rules. 

Because the observed properties of all results are 
similar, we show the results for two data sets, Dataset1 
and Dataset 2 in Table 6∼Table 9: Dataset1 has eight 
values for condition attributes and five values for deci-
sion attributes while Dataset 2 has eight values for con-
dition attributes and seven values for decision attributes. 
In those tables, each entry ave ± dev shows the average 
ave and the standard deviation dev. In Table 6 and Ta-
ble 7, mark * implies that the average of the accuracy 
of the proposed approach is not significantly different 
from that of MLEM2 by the paired t-test with signifi-
cance level α 3 0.05.  

As shown in Table 6 and Table 7, the standard 
value switching approach induces good sets of decision 
rules. From ratio 2% to 10%, the sets of decision rules 
induced by the standard value switching approach 
(SW) are significantly better than the conventional ap-
proach (ML) of MLEM2 in the classification accuracy. 
On the other hand, the other four approaches (CA1∼ 
CA4) are not very advantageous. 

The similar results are obtained in the same ex-
periments using other 28 data sets. Generally speaking, 
the standard value switching approach (SW) is signifi-
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cantly better than the conventional approach (ML) of 
MLEM2 in many cases. The other four approaches 
(CA1∼CA4) are not very advantageous. In some cases, 
they are better but in some other cases, they are worse 
than the conventional approach (ML). We cannot ob-
serve any tendency in the advantages of the four ap-
proaches (CA1∼CA4). 

From Table 8, we know that the number of rules 
induced by the standard value switching approach 
(SW) is smaller than the those by four approaches 
(CA1∼CA4) but a little larger than that by the conven-
tional approach (ML). Considering the independent 
applications of MLEM2, it is not very surprising that 
the number of rules induced by the conventional ap-

proach (ML) is the smallest.  
From Table 9, we know that the average length of 

conditions of rules induced by the standard value swi-
tching approach (SW) is not very small. The average 
length of conditions of rules of the conventional ap-
proach (ML) is the smallest because of the independent 
applications of MLEM2. 

By the above results, we have observed that, when 
the data are distributed along hills and valleys around a 
value vt, the switching approach based on vt is appro-
priate. This observation is coincident with the previous 
observation in the first stage experiments. Then we 
have confirmed that the best combination adopts the 
refining approach for hill/valley structures and adopts 

Table 6. Classification accuracy in Dataset1. 

Rate 2% 3% 4% 5% 6% 8% 10% 30% 
ML 57.3±5.5 66.5±5.6 73.9±4.8 78.5±4.6 82.2±4.2 88.1±4.0 91.5±2.7 98.9±0.7 
CA1 55.4±6.4 64.2±5.7 72.0±7.0 76.1±5.7 79.9±4.7 85.4±4.6 89.9±3.5 98.5±0.9 
CA2 55.6±6.0 64.6±5.6 72.2±6.6 75.9±5.7 80.0±5.0 85.9±4.6 89.8±3.4 98.5±0.9 
CA3 55.8±6.1 65.0±6.1 73.1*±5.0 78.1*±4.9 82.0*±4.9 87.6*±4.5 91.9*±3.2 99.2±0.7 
CA4 56.3*±5.4 65.1±5.9 72.9±5.4 78.0*±5.1 82.3*±4.8 88.1*±4.2 91.6*±3.1 99.1±0.7 
SW 58.1*±6.6 67.6±5.9 74.9±5.5 79.2±5.1 83.2±4.4 88.9±4.4 92.7±2.6 99.2±0.7 

 
Table 7. Classification accuracy in Dataset2. 

Rate 2% 3% 4% 5% 6% 8% 10% 30% 
ML 46.7±6.2 56.0±6.1 63.2±6.1 69.1±6.0 73.8±5.8 81.2±4.6 86.3±3.3 98.2±1.2 
CA1 45.9*±6.6 55.5*±6.5 62.4*±6.3 67.9±6.7 72.1±6.1 79.8±5.5 84.5±4.3 97.8±1.5 
CA2 46.2*±7.1 55.9*±6.5 63.0*±6.7 68.2*±6.3 72.0±6.0 79.3±5.3 83.8±3.9 97.5±1.6 
CA3 45.2±5.5 54.0±6.3 61.3±7.1 68.1*±6.9 73.4*±6.5 82.0*±5.7 87.9±3.7 98.4*±1.0
CA4 45.0±6.3 54.0±5.9 61.2±7.0 67.6±6.3 72.6*±6.8 81.2*±5.2 86.3*±4.1 98.1*±1.2
SW 48.1±6.0 57.9±6.1 66.5±7.0 72.7±7.0 76.8±5.9 84.4±4.8 89.0±3.4 98.6±1.0 

 
Table 8. The number of induced rules(left-hand side: Dataset1, right-hand side: Dataset2). 

Rate 2% 4% 6% 10% 2% 4% 6% 10% 
ML 24.9±2.6 32.2±2.5 35.9±2.4 39.2±2.1 34.9±4.1 47.8±4.0 53.9±5.1 59.8±3.4 
CA1 28.1±3.6 37.2±4.6 42.1±4.6 44.2±3.7 40.2±5.9 57.6±7.5 65.1±8.2 72.3±8.3 
CA2 29.9±4.1 38.2±4.0 42.3±4.3 44.6±4.1 43.6±6.6 60.0±7.3 66.9±7.0 76.5±7.9 
CA3 29.5±3.6 37.9±4.4 40.6±4.4 42.4±2.7 43.4±6.0 58.5±7.7 64.4±7.4 66.2±5.6 
CA4 31.2±3.8 38.9±4.5 40.7±4.0 42.8±3.2 46.7±7.1 60.9±7.3 66.2±6.8 70.4±6.0 
SW 26.4±2.8 33.5±2.9 37.4±3.0 40.1±2.6 38.1±5.8 50.9±5.0 56.9±5.6 61.6±4.5 

 
Table 9. The average length of conditions (left-hand side: Dataset1, right-hand side: Dataset2). 

Rate 2% 4% 6% 10% 2% 4% 6% 10% 
ML 2.01±0.16 2.19±0.12 2.25±0.10 2.26±0.08 1.82±0.14 2.05±0.11 2.09±0.09 2.14±0.08
CA1 2.32±0.19 2.44±0.18 2.49±0.14 2.44±0.13 2.20±0.24 2.40±0.20 2.42±0.18 2.40±0.15
CA2 2.12±0.17 2.28±0.14 2.38±0.12 2.39±0.13 1.93±0.21 2.18±0.17 2.21±0.16 2.26±0.12
CA3 2.07±0.18 2.25±0.16 2.28±0.13 2.23±0.10 1.97±0.19 2.22±0.18 2.26±0.15 2.25±0.13
CA4 1.90±0.15 2.09±0.11 2.17±0.09 2.18±0.08 1.75±0.17 2.01±0.13 2.05±0.10 2.10±0.09
SW 2.12±0.18 2.27±0.14 2.28±0.12 2.24±0.09 1.93±0.16 2.12±0.13 2.15±0.12 2.16±0.09
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the coarsening approach for reverse-hill/reverse-valley 
structures of given dataset.  

5.  CONCLUDING REMARKS 

In this paper, we investigated the rule induction 
from decision tables with the ordinal condition and 
decision attributes. Because of the order of decision 
attribute values, inducing rules with respect to upward 
and downward unions is advantageous and then con-
clusions of rules may have inclusion relations. Two 
basic approaches for rule induction in consideration of 
inclusion relations of conclusions were proposed: a 
refining approach and a coarsening approach. Four com-
binations of those approaches were described. More-
over, based on the observation in the results of hill-
structured datasets, the standard value switching ap-
proach was proposed under the assumptions that the 
standard value is known and that data are distributed 
along hills and valleys around the standard value. By 
the numerical experiments using hill-valley-structured 
datasets, we have observed that the standard value swi-
tching approach performed the best. Then we have con-
cluded that the best combination adopts the refining 
approach for hill/valley structures and adopts the coars-
ening approach for reverse-hill/reverse-valley structures 
of given dataset. 

In the real world, we may often come across data 
distributed along hills and valleys around some stan-
dard value. Then the standard value switching approach 
would be useful. However, to use this approach, we 
should know the standard value. The estimation of the 
standard value is one of the future topic of our research. 
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