• Title/Summary/Keyword: Deciduous trees

Search Result 305, Processing Time 0.018 seconds

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine - (최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작)

  • Chung, U-Ran;Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.121-131
    • /
    • 2008
  • This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

Variation of Samara, Seed, Germination and Growth Characteristics of Ulmus davidiana var. japonica Nakai Populations (느릅나무 자연집단(自然集團)의 시과(翅果), 종자(種子), 발아(發芽) 및 생장특성(生長特性) 변이(變異))

  • Song, Jeong-Ho;Jang, Kyung-Hwan;Lim, Hyo-In;Park, Wan-Geun;Bae, Kwan-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.226-231
    • /
    • 2011
  • Ulmus davidiana var. japonica is a deciduous tree species used for traditional medicine. This study was conducted to investigate the variation of samara, seed, germination and growth characteristics among populations and among individuals within five natural populations of U. davidiana var. japonica distributed in Korea. The ten characteristics of samara and seed, the three germination behaviors as well as the two growth traits were studied in samaras collected from total 32 trees. Statistical analysis of all characteristics showed that there were significant differences among populations as well as among individuals within populations. In this study, the mean characteristics of this species were 13.0 mm in samara length, 9.7 mm in samara width, 1.37 in samara index, 0.015 g in samara weight, 3.07 mm in samara stalk length, 3.85 seed length, 2.66 mm in seed width, 1.46 in seed index, 1.29 mm seed thickness, 0.0062 g in seed weigh, 34.8% in germination percentage, 8.6 days in mean germination time, 3.5 ea./day in gemination rate, 37.7 cm in height and 4.90 mm in root collar diameter. Especially, coefficients of variations in samara weight, germination percentage, germination rate, height and root collar diameter were relatively high (${\geq}30.0%$) compared to other traits. There was no significant relationship between population association and geographical distribution. The results of principal component analysis for 15 characteristics showed that primary four principal components (PC's) explained 100% of the total variation. The first PC accounted for 41.8% of the variability which correlated with morphological traits, the second PC accounted for 32.9% of the variability which correlated with germination behaviors and the third PC accounted for 16.3% of the variability which correlated with growth traits.

A Study on the Gwanbang forest of Ganghwa in the Joseon Dynasty Period (조선시대 강화지역 관방림(關防林)의 특성 연구)

  • Shim, Sun-Hui;Lee Jae-Yong;Kim, Choong-Sik
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.35-46
    • /
    • 2023
  • This study investigated and analyzed ancient records on the type, planting background, and construction process of Gwanbang forest(關防林) planned for military defense during the Joseon Dynasty to find out the purpose, location, and planting species of Gwanbang forest. The research results were as follows. During the Joseon Dynasty, Gwanbang forests were created around various government facilities(關防施設), such as Eupseong(邑城), major government offices, camps, and fortifications, for the purpose of defending against enemies. Gwanbang forest includes Yeongaeglim(嶺阨林), which was created on the crest of a strategically important hill, and Military Forest created for military purposes. Most of the spirit forest was designated as Geumsan(禁山) and protected and managed, and the Gwanbang forest was created for various purposes such as shielding, flood damage and river bank erosion prevention as well as external defense. In addition, in order to continuously and efficiently produce wood, which is a material for ships, buildings, and agricultural tools, in most cases, large areas were created as mixed forests. As for the species constituting the Gwanbang forest, there are records of tangerine tree, which is effective for defense because it has thorns, and deciduous broad-leaved trees such as zelkova, elm, willow, david hemiptelea, and oak appear. In the case of Ganghwa island, which served as the defense of the capital and the royal family during the Joseon Dynasty, several records have confirmed that a forest densely planted with trifoliate orange was created for the purpose of Gwanbang forest to reinforce the defense of the outer fortress. Based on historical research in the literature, assuming that the natural monument 'Gapgotri tangerine tree in Ganghwa Island' was planted in the 30th year of King Sukjong(1704), the first record of planting trifoliate orange in Ganghwa Island, the maximum age is estimated to be more than 319 years.

Depositional Environment and Formation Ages of Eurimji Lake Sediments in Jaechon City, Korea (제천 의림지 호저퇴적물 퇴적환경과 형성시기 고찰)

  • 김주용;양동윤;이진영;김정호;이상헌
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.7-31
    • /
    • 2000
  • Quaternary Geological and geophysical investigation was performed at the Eurimji reservoir of Jaechon City in order to interprete depositional environment and genesis of lake sediments. For this purpose, echo sounding, bottom sampling and columnar sampling by drilling on board and GPR survey were employed for a proper field investigation. Laboratory tests cover grain size population analysis, pollen analysis and $^{14}C$ datings for the lake sediments. The some parts of lake bottom sediments anthropogenically tubated and filled several times to date, indicating several mounds on the bottom surface which is difficult to explain by bottom current. Majority of natural sediments were accumulated both as rolling and suspended loads during seasonal flooding regime, when flash flow and current flow are relatively strong not only at bridge area of the western part of Eurimji, connected to stream valley, but at the several conduit or sewage system surrounding the lake. Most of uniform suspend sediments are accumulated at the lake center and lower bank area. Some parts of bottom sediments indicate the existence of turbid flow and mudflow probably due to piezometric overflowing from the lake bottom, the existence of which are proved by CM patterns of the lake bottom sediments. The columnar samples of the lake sediments in ER-1 and ER-3-1 boreholes indicate good condition without any human tubation. The grain size character of borehole samples shows poorly sorted population, predominantly composed of fine sand and muds, varying skewness and kurtosis, which indicate multi-processed lake deposits, very similar to lake bottom sediments. Borehole columnar section, echo sounding and GPR survey profilings, as well as processed data, indicate that organic mud layers of Eurimji lake deposits are deeper and thicker towards lower bank area, especially west of profile line-9. In addition the columnar sediments indicate plant coverage of the Eurimji area were divided into two pollen zones. Arboreal pollen ( AP) is predominant in the lower pollen zone, whreas non-aboreal pollen(NAP) is rich in the upper pollen zone. Both of the pollen zones are related to the vegetation coverage frequently found in coniferous and deciduous broad-leaved trees(mixed forest) surrounded by mountains and hilly areas and prevailing by aquatic or aquatic margin under the wet temperate climate. The $^{14}C$ age of the dark gray organic muds, ER1-12 sample, is 950$\pm$40 years B.P. As the sediments are anthropogenetically undisturbed, it is assumed that the reliability of age is high. Three $^{14}C$ ages of the dark gray organic muds, including ER3-1-8, ER3-1-10, ER3-1-11 samples, are 600$\pm$30 years B.P., 650$\pm$30 years B.P., 800$\pm$40 years B.P. in the descending order of stratigraphic columnar section. Based on the interpretation of depositional environments and formation ages, it is proved that Eurimji reservoir were constructed at least 950$\pm$40 years B.P., the calibrated ages of which ranges from 827 years, B.P. to 866 years B.P. Ancient people utilize the natural environment of the stream valley to meet the need of water irrigation for agriculture in the local valley center and old alluvium fan area.

  • PDF

Characteristics of Vegetation Structure of Burned Area in Mt. Geombong, Samcheok-si, Kangwon-do (강원도 삼척 검봉산 일대 산불 피해복원지 식생 구조 특성)

  • Sung, Jung Won;Shim, Yun Jin;Lee, Kyeong Cheol;Kweon, Hyeong keun;Kang, Won Seok;Chung, You Kyung;Lee, Chae Rim;Byun, Se Min
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.3
    • /
    • pp.15-24
    • /
    • 2022
  • In 2000, a total of 23,794ha of forest was lost due to the East Coast forest fire, and about 70% of the damaged area was concentrated in Samcheok. In 2001, artificial restoration and natural restoration were implemented in the damaged area. This study was conducted to understand the current vegetation structure 21 years after the restoration of forest fire damage in the Samcheok, Gumbong Mountain area. As a result of classifying the vegetation community, it was divided into three communities: Quercus variabilis-Pinus densiflora community, Pinus densiflora-Quercus mongolica community, and Pinus thunbergii community. Quercus variabilis, Pinus densiflora, and Pinus thunbergii planted in the artificial restoration site were found to continue to grow as dominant species in the local vegetation after restoration. As for the species diversity index of the community, the Quercus variabilis-Pinus densiflora community dominated by deciduous broad-leaf trees showed the highest, and the coniferous forest Pinus thunbergii community showed the lowest. Vegetation in areas affected by forest fires is greatly affected by reforestation tree species, and 21 years later, it has shown a tendency to recover to the forest type before forest fire. In order to establish DataBase for effective restoration and to prepare monitoring data, it is necessary to construct data through continuous vegetation survey on the areas affected by forest fires.