• Title/Summary/Keyword: Decentralized Platform

Search Result 53, Processing Time 0.023 seconds

Decentralized Motion Control of Mobile Manipulator

  • Phan, Tan-Tung;Suh, Jin-Ho;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1841-1846
    • /
    • 2003
  • The mobile platform-manipulator discussed in this paper is a three link manipulator mounted on a mobile platform. This mobile manipulator is used for welding operation and it is able to operate in a narrow space. The task of the torch, which is mounted at the end effector of the manipulator, is to track along the seam line and the task of the mobile platform is to move the origin point of the manipulator in order to go away from the singularity of the manipulator’s configuration. In this paper, the path planning for the motion of two subsystems (i.e., the manipulator and the mobile platform) was presented by the decentralized control method. Two controllers for the mobile platform and the manipulator were designed, and the relationship between the independent controllers is its state information. The simulation results are also presented to demonstrate the effectiveness of the control method.

  • PDF

A wireless decentralized control experimental platform for vibration control of civil structures

  • Yu, Yan;Li, Luyu;Leng, Xiaozhi;Song, Gangbing;Liu, Zhiqiang;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.47-56
    • /
    • 2017
  • Considerable achievements in developing structural regulators as an important method for vibration control have been made over the last few decades. The use of large quantities of cables in traditional wired control systems to connect sensors, controllers, and actuators makes the structural regulators complicated and expensive. A wireless decentralized control experimental platform based on Wi-Fi unit is designed and implemented in this study. Centralized and decentralized control strategies as sample controllers are employed in this control system. An optimal control algorithm based on Kalman estimator is embedded in the dSPACE controller and the DSP controller. To examine the performance of this control scheme, a three-story steel structure is developed with active mass dampers installed on each floor as the wireless communication platform. Experimental results show that the wireless decentralized control exhibits good control performance and has various potential applications in industrial control systems. The proposed experimental system may become a benchmark platform for the validation of the corresponding wireless control algorithm.

Decentralized Control Design for Welding Mobile Manipulator

  • Phan, Tan-Tung;Chung, Tan-Lam;Ngo, Manh-Dung;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.756-767
    • /
    • 2005
  • This paper presents a decentralized motion control method of welding mobile manipulators which use for welding in many industrial fields. Major requirements of welding robots are accuracy, robust, and reliability so that they can substitute for the welders in hazardous and worse environment. To do this, the manipulator has to take the torch tracking along a welding trajectory with a constant velocity and a constant heading angle, and the mobile-platform has to move to avoid the singularities of the manipulator. In this paper, we develop a kinematic model of the mobile-platform and the manipulator as two separate subsystems. With the idea that the manipulator can avoid the singularities by keeping its initial configuration in the welding process, the redundancy problem of system is solved by introducing the platform mobility to realize this idea. Two controllers for the mobile-platform and the manipulator were designed, respectively, and the relationships between two controllers are the velocities of two subsystems. Control laws are obtained based on the Lyapunov function to ensure the asymptotical stability of the system. The simulation and experimental results show the effectiveness of the proposed controllers.

Web 3.0 Business Model Canvas of Metaverse Gaming Platform, The Sandbox

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.119-129
    • /
    • 2024
  • We look at Web 3.0 business model canvas (BMC) of metaverse gaming platform, The Sandbox (TS). As results, the decentralized, blockchain-based platform, TS benefits its creators and players by providing true ownership, tradability of decentralized assets, and interoperability. First, in terms of the governance and ownership, The SAND functions a governance token allowing holders to participate in decision and SAND owners can vote themselves or delegate voting rights to other players of their choice. Second, in terms of decentralized assets and activities, TS offers three products as assets like Vox Edit as a 3D tool for voxel ASSETS, Marketplace as NFT market, and Game Maker as a visual scripting toolbox. The ASSETS made in Vox Edit, sold on the Marketplace, can be also utilized with Game Maker. Third, in terms of the network technology, in-game items are no longer be confined to a narrow ecosystem. The ASSETS on the InterPlanetary File System (IPFS) are not changed without the owner's permission. LAND and SAND are supported on Polygon, so that users interact with their tokens in a single place. Last, in terms of the token economics, users can acquire in-game assets, upload these assets to the marketplace, use for paying transaction fees, and use these as governance token for supporting the foundation.

Web3.0 Video Streaming Platform from the Perspective of Technology, Tokenization & Decentralized Autonomous Organization

  • Song, Minzheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.149-160
    • /
    • 2024
  • For examining Web3.0 video streaming (VS) platforms in terms of the decentralized technology, tokenization and decentralized autonomous organization (DAO), we look at four platforms like DLive, DTube, Livepeer, and Theta Network (Theta). As a result, DLive which firstly partnered with Medianova for CDN and with Theta for peer to peer (P2P) network and migrates to Tron blockchain (BC), receives no commission from what creators earn, gives rewards to viewers by measuring engagement, and incentivizes participation by allowing 20% of donation & fees for funding development, 5% to BitTorrent Token (BTT) stakeholders (among these 5%, 20% to partners, 80% to other BTT stakeholders). DTube on its own lower-layer BC, Avalon, offers InterPlanetary File System (IPFS), gives 90% of the created value to creators or curators, and try to empower the community. Livepeer on Ethereum BC offers decentralized CDN, P2P, gives Livepeer Token (LPT) as incentive for network participants, and delegators can stake their LPT to orchestrators doing good. Theta on its native BC pulls streams from peering caching nodes, creates P2P network, gives Theta utility token, TFUEL for caching or relay nodes contributors, and allows Theta governance token, THETA as staking token. We contribute to the categorization of Web3.0 VS platforms: DLive and DTube reduce the risk of platform censorship, promote the diverse content, and allow the community to lead to more user-friendly environments. On the other hand, Livepeer and Theta provide new methods to stream content, but they have some differences. Whereas Livepeer focuses on the transcoding layer, Theta concentrates both on the video application layer and content delivery layer. It means, Theta tries to deliver value to all participants by enhancing network quality, reducing CDN cost, and rewarding users in utility tokens for the storage and bandwidth they provide.

Fully Adaptive Feedforward Feedback Synchronized Tracking Control for Stewart Platform Systems

  • Zhao, Dongya;Li, Shaoyuan;Gao, Feng
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.689-701
    • /
    • 2008
  • In this paper, a fully adaptive feedforward feedback synchronized tracking control approach is developed for precision tracking control of 6 degree of freedom (6DOF) Stewart Platform. The proposed controller is designed in decentralized form for implementation simplicity. Interconnections among different subsystems and gravity effect are eliminated by the feedforward control action. Feedback control action guarantees the stability of the system. The gains of the proposed controller can be updated on line without requiring any prior knowledge of Stewart Platform manipulator. Thus the control approach is claimed to be fully adaptive. By employing cross-coupling error technology, the proposed approach can guarantee both of position error and synchronization error converge to zero asymptotically. Because the actuators work in synchronous manner, the tracking performances are improved. The corresponding stability analysis is also presented in this paper. Finally, simulation is demonstrated to verify the effectiveness of the proposed approach.

Development of Hardware In-the-Loop Simulation System for Testing Power Management of DC Microgrids Based on Decentralized Control (분산제어 기반 직류 마이크로그리드 전력관리시스템의 HIL 시뮬레이션 적용 연구)

  • To, Dinh-Du;Le, Duc-Dung;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.191-200
    • /
    • 2019
  • This study proposes a hardware-in-the-loop simulation (HILS) system based on National Instruments' PXI platform to test power management and operation strategies for DC microgrids (MGs). The HILS system is developed based on the controller HIL prototype, which involves testing the controller board in hardware with a real-time simulation model of the plant in a real-time digital simulator. The system provides an economical and effective testing function for research on MG systems. The decentralized power management strategy based on the DC bus signaling method for DC MGs has been developed and implemented on the HILS platform. HILS results are determined to be similar to those of the off-line simulation in PSIM software.

Wireless sensor network for decentralized damage detection of building structures

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.399-414
    • /
    • 2013
  • The smart sensor technology has opened new horizons for assessing and monitoring structural health of civil infrastructure. Smart sensor's unique features such as onboard computation, wireless communication, and cost effectiveness can enable a dense network of sensors that is essential for accurate assessment of structural health in large-scale civil structures. While most research efforts to date have been focused on realizing wireless smart sensor networks (WSSN) on bridge structures, relatively less attention is paid to applying this technology to buildings. This paper presents a decentralized damage detection using the WSSN for building structures. An existing flexibility-based damage detection method is extended to be used in the decentralized computing environment offered by the WSSN and implemented on MEMSIC's Imote2 smart sensor platform. Numerical simulation and laboratory experiment are conducted to validate the WSSN for decentralized damage detection of building structures.

HIL Simulation of Power Management for Standalone DC Microgrids Based on Decentralized Control (분산제어 기반 독립형 직류 마이크로그리드 전력관리시스템의 HIL 시뮬레이션)

  • To, Dinh Du;Le, Duc Dung;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.376-377
    • /
    • 2018
  • A hardware-in-the-loop (HIL) platform for a power management control of islanded DC microgrids is established. In order to avoid the complexity and high costs, a decentralized control based on the DC Bus Signaling (DBS) method is applied to the HIL system. The simulation results for the HIL microgrid platform have verified the effectiveness of power management strategy.

  • PDF

Consideration factors in implementing blockchain technology-based DID platform using ANP methodology - From a two-sided market perspective - (ANP 방법론을 이용한 블록체인 기술 기반 DID 플랫폼 구현 시 고려요소 - 양면시장 관점에서-)

  • Choi, Seungho;Youn, Daemyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.4
    • /
    • pp.127-136
    • /
    • 2022
  • As technological development continues, platforms with more diverse structures are emerging. Existing research predicts that a new structure based on technology and innovation will affect the two-sided market. This study evaluated the decentralized identifier (DID) platform, a new platform based on blockchain technology, of the importance of this platform from the perspective of the two-sided market. Using the Analytic Network Process, IT, platform, and blockchain experts conducted a dual comparison survey. Data with a consistency ratio value of 0.1 or less were selected and analyzed for 12 data. The research results showed the importance of service quality, policy support, openness, and uncertainty. This study is expected to be used to support the development of strategic decision-making for blockchain and DID platform-based business companies.