• Title/Summary/Keyword: Decay Rate

Search Result 606, Processing Time 0.033 seconds

Effect of Storage Condition on the Quality and Microbiological Change of Strawberry “Minyubong” during Storage (저장조건이 딸기 “미녀봉”의 저장 중 품질 및 미생물학적 변화에 미치는 영향)

  • Lee, Se-Hee;Lee, Myung-Suk;Namkyu Sun;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • To examine the effect of storage condition on the quality and microbiological change of strawberry “Minyubong”, the rate of weight loss, decay rate, pH and titratable acidity, and microbial (total bacterial count, mold and yeast) changes were determined during storage. Strawberry fruits were packaged with low-density polyethylene (LDPE). Strawberries were then stored at 4$^{\circ}C$ and 20$^{\circ}C$, respectively. LDPE package was effective on the decrease of decay rate of strawberry as well as the rate of weight loss, compared with the non-packaged. Microbial changes of strawberry stored at 4$^{\circ}C$ and 20$^{\circ}C$ were monitored during storage. Packaging affected the microbial change, resulting in retarding the growth of total bacteria as well as mold and yeast, compared with the non-packaged, regardless of storage temperature. These results indicate that storage of strawberry fruits wrapped with LDPE at 4'C should be recommended in terms of quality as well as its shelf-life.

Decay Rate and Nutrients Dynamics during Decomposition of Oak Branches (상수리나무 가지의 분해 및 분해과정에 따른 영양염류 변화)

  • 문형태
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.93-98
    • /
    • 2004
  • Decay rate and nutrient dynamics during decomposition of oak (Quercus acutissima) branches were investigated for 33-months in Kongju, Korea. After 33-months, remaining weight of B₁, B₂ and B₃ was 44.5%, 58.5% and 55.37%, respectively. Decomposition constant (k) for B₁, B₂ and B₃ was 0.294/yr, 0.195/yr, 0.215/yr, respectively. N concentration in decomposing oak branches increased in all diameter classes. After 33-months, remaining N in B₁, B₂ and B₃ was 101.2%, 91.9%, 104.4%, respectively. P concentration in decomposing oak branches increased in B₁ and B₂, and there was no immobilization period. After 33-months, remaining P in B₁, B₂ and B₃ was 57.2%, 74.4%, 53.9%, respectively. K concentration in decomposing oak branches decreased significantly. Remaining K in B₁, B₂ and B₃ was 7.7%, 17.1% and 17.2%, respectively, which was significantly lower than other nutrients. Ca concentration in decomposing oak branches increased in B₂ and B₃. After 33-months, remaining Ca in B₁, B₂ and B₃ was 58.5%, 47.8% and 75.2%, respectively. Initial concentration of Mg in oak branch was higher in smaller diameter class. After 33-months, remaining Mg in B₁, B₂ and B₃ was 44.3%, 57.9% and 47.7%, respectively.

PHYSICAL PROPERTIES OF VAR10US BRANDS OF ELASTOMERIC CHAINS (수종의 합성 고무탄성재의 성질에 관한 연구)

  • Kim, Kyung-Ho;Hwang, Chung-Ju;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.27 no.6 s.65
    • /
    • pp.943-954
    • /
    • 1997
  • Forces needed for orthodontic tooth movement are obtained from various appliances such as orthodontic wires or elastic rubber. Orthodontic elastic rubber is widely used clinically, but permanent deformation and force decay may occur from the environmental changes, time of clinical use and the extent of the stretch, making the Prediction of force being applied difficult. The Present study examined and compared the changes in residual force between three brands of elastomeric chains (Ormco Generation II Power Chains ; brand A, RMO : Energy-Chain ; brand B, Unitek : AlastiK ; brand C) under various environmental conditions, amount of initial force, types of elastomer and the rate of extension. The characteristic physical properies of the elastomeric chains were as follows. 1. In all three brands, the residual force ratio was largest when the chains were stored in air, with no difference between water and saliva. 2. In all three brands, after 24 hours, there was no statistical difference in residual force ratio according to the initial force level. 3. In Brand A and B, the presence of filament had no correlation with the residual force ratio. In Brand C force decay was more severe when the chain contained filament. 4. In each brand, rate of extension had no effect on residual force ratio. 5. Brand B showed relatively higher residual force ratio compared to other brands.

  • PDF

Effect of Maturity and Storage Temperature on Preservation of Fresh Jujube (숙도 및 저장온도가 생대추의 저장적성에 미치는 영향)

  • An, Duck-Soon;Lee, Dong-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.758-763
    • /
    • 1997
  • Fresh jujubes (Zizyphus jujuba Miller) of whitish green and red ripe maturities were stored at 5 different temperatures, and quality changes through the storage were measured to find an optimal storage condition. Respiration rates and their temperature dependences for both maturities were not different from each other, which suggested non-climacteric pattern of postharvest respiration. Red ripe fruits showed heavier weight and higher content in soluble solid and ascrobic acid compared with whitish green mature fruits. Through the storage of jujubes in perforated packages tissue softening and decay were main visual quality deteriorations with the former preceding the latter. The whitish green mature jujubes showed slower rate of quality changes in softening and decay than red ripe ones, and are thus more suitable for long term storage. In the storage, the whitish green fruits changed into red color, and showed increase in soluble solid and decrease in acidity and ascorbic acid content. Storing the jujubes at $-2^{\circ}C$ resulted in symptoms of chilling injury, and storing at higher temperatures above $0^{\circ}C$ accelerated the decay and softening. $0^{\circ}C$ was found to be optimal temperature for long term storage, where jujube had the lowest rate of quality changes without chilling injury. Even at optimal temperature of $0^{\circ}C$, however, storage life retaining freshness was only around 40 days which is not enough.

  • PDF

Spacecraft Spin Rate Change due to Propellant Redistribution Between Tanks

  • Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.23-34
    • /
    • 1984
  • A bubble trapped in the liquid manifold of INTELSAT IV F-7 spacecraft caused a mass imbalance between the System 1 propellant tanks and a wobble half angle of 0.38 degree to 0.48 degree. A maneuver on May 14, 1980 passed the bubble through the axial jet and allowed propellant to redistribute. A 0.2 rpm change in sin rate was observed with an exponential decay time constant of 6 minutes. In this paper, moment of inertia, tank geometry and hydrodynamic models are derived to match the observed spin rate data. The values of the total mass of propellant considered were 16, 19 and 20 kgs with corresponding mass imbalances of 14.3, 15 and 15.1 Kgs, respectively. The result shows excellent agreement with observed spin rate data but it was necessary to assume a greater mass of hydrazine in the tanks than propellant accounting indicated.

  • PDF

Reconsideration of CN Radiation an d $C_2$ Dissociation Rate Coefficient ($C_2$의 해리 반응 계수와 CN 복사에 대한 재고찰)

  • Hyun, Seong-Yoon;Park, Chul;Chang, Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.92-95
    • /
    • 2008
  • We performed the theoretical calculation of CN Violet radiation using the code SPRADIAN07 to predict the Lee et al.'s experimental measurements and to reinvestigate $C_2$ dissociation rate. CN Violet radiations are calculated under the Boltzmann and non-Boltzmann distribution using two chemical reaction sets: Park-Losev-G\"{o}kcen-Tsang and Park-Losev-G\"{o}kcen-Tsang-Lee models. Our SPRADIAN07 calculations show improvement in prediction of absolute radiation intensity of CN Violet and its decay rate by Park-Losev-G\"{o}kcen-Tsang reaction set with $C_2$ dissociation rate coefficient of $k_f$ = 1.5${\times}$10$^{16}$ exp(-71,600/$T_x$) cm$^3$ mole$^{-1}$ s$^{-1}$.

  • PDF

Ionizing Characteristic of Glow Discharge by Controlled Air Flow Rate (공기유량에 따른 글로우 방전의 제전 특성)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.49-53
    • /
    • 2008
  • Glow discharge has lots of attractive properties, such as lower discharge sustaining voltage, no generation of ozone, and so on. And more, ionizer was developed recently using an atmospheric pressure glow discharge. On the other hand, ionizer needs a compressed or blown air to transport ion for charged objects. This air is very useful in explosive hazardous area to prevent the explosion of flammable gas and/or vapor by ignition sources, e.g. electrical spark. In this paper, we investigated the ionizing characteristic of atmospheric pressure glow discharge by controlled air flow rate from 5 liters to 60 liters a minute, and compared with decay time between the corona discharge and glow discharge as a function of some direction and distance from discharge ion source. We confirmed that an air flow rate needs 25 liters a minute to sustain the most suitable atmospheric pressure glow discharge and to increase an ionizing efficiency.

Mass Loss and Changes of Nutrients during the Decomposition of Typha angustata (애기부들의 분해 및 분해과정에 따른 영양염류의 변화)

  • 문형태;남궁정;김정희
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.105-111
    • /
    • 2000
  • Mass loss and changes of mineral nutrient during the decomposition of Typha angustata for 13 months from November in 1998 to December in 1999, were investigated in small watercourse in Boryeong, Chungnam Province, Korea. After 13 months, remaining mass of leaves, stems and rhizomes was 34.7%, 59.2%, 7.2%, respectively. The rate of weight loss of the rhizomes was significantly higher than those of the leaves and stems. The decay rate of leaves, stems and rhizomes was 1.06, 0.52, $2.63 yr^{-1}$, respectively Initial concentration of nutrients in leaves, stems and rhizomes was 11.5, 9.0, 14.5 mg/g for N, 0.30, 0.27, 0.47 mg/g for P, 20.7, 26.9, 26.6 mg/g for K, 14.50, 4.77, 3.25 mg/g for Ca, and 1.99, 1.32, 2.07 mg/g for Mg, respectively. Except for Ca, concentrations of nutrients in rhizomes were higher than those in stems and rhizomes. There was no immobilization period during the decomposition of each organ of T. angustata. In case of K, most are lost during the first 1 month. Phosphorus in decomposing leaves and stems lost 58% and 66%, respectively, of the initial P capital within 1 month. [Decay rate, Decomposition, Immobilization, Macrophytes, Nutrients, Typha angustata].

  • PDF

Estimation of Kinetic Coefficient and Assimilated Nutrients Mass in SBR Process (연속회분식 반응 공정에서 동역학적 계수 및 미생물합성에 사용된 영양물질 산정)

  • Ji, Dae-Hyun;Shin, Sang-Woo;Lee, Kwang-Ho;Lee, Jae-Kune
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.607-612
    • /
    • 2007
  • In this study, we investigated the variations of the kinetic coefficients and Chemical Oxygen Demand (COD), N and P mass used for assimilation of a sequencing batch reactor (SBR) system with the variation of SRTs; SRTs of 7.5, 10.0, 12.5, 15.0 and 20.0 days were tested in one cycle of SBR operation to determine the optimum conditions for the operation of the SBR and estimate its COD, nitrogen and phosphorus removal efficiencies. The SBR system was operated under the conditions as follows: an operation time of 6 hours per cycle, a hydraulic retention time (HRT) of 12 hours, an influent COD loading of $0.4kg/m^3/day$, and an influent nitrogen loading of $0.068kgT-N/m^3/day$. The yield coefficient (Y) and decay rate coefficient ($k_d$) were estimated to be 0.4198 kgMLVSS/kgCOD and $0.0107day^{-1}$ by calculating the removal rate of substrate according to the variation of SRT. Considering total nitrogen amount removed by sludge waste process, eliminated by denitrification, and in clarified water effluent with reference to 150 mg/cycle of influent nitrogen amount, the percentage of nitrogen mass balance from the ratio of the nitrogen amount in effluent (N output) to that in influent (N input) for Runs 1~5 were 95.5, 97.0, 95.5, 99.5, and 95.5%, respectively, which is well accounted for, with mass balances close to 100%.

Mass Loss and Changes of Nutrients during Decomposition of Phragmites communis at the Fringe of Stream

  • Mun, Hueong-Tae;Namgung, Jeong;Namgung, Jeong-Hee-Namgung
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.157-161
    • /
    • 2000
  • Mass loss and changes of mineral nutrients during decomposition of Phragmites communis for 13 months from November 1998 to December 1999, were investigated at the fringe of stream at Boryeong, Chungnam Province in Korea. Plant materials, which were collected in November 1998. were divided into leaves, culms and rhizomes. Litterbags, 15${\times}$15 cm, were made of nylon mesh with 2-mm$^2$ holes. At 13 months after installation, remaining mass of leaves, culms and rhizomes was 29.0%, 57.4%, 20.6%, respectively. Mass loss rate of the culms was significantly lower than those of the leaves and rhizomes. The decay rate of leaves, culms and rhizomes was 1.21. 0.42 and 1.48 per year, respectively. Initial concentration of N, P, K, Ca and Mg of leaves. culms and rhizomes was 22.5, 9.0, 15.5 mg/g for N, 0.34. 0.10, 0.33 mg/g for P, 15.0, 12.5. 12.3 mg/g for K, 2.84. 0.80, 0.03 mg/g for Ca. 1.94. 0.97, 0.40 mg/g for Mg, respectively. Concentrations of nutrients were higher in leaves than in culms and rhizomes. Except for N and Mg in rhizomes, there was no immobilization period during the decomposition. In the case of remaining K and Ca, most are lost during the first 3 months. Without any suitable method for removal of dead part, eutrophication of freshwater may be accelerated by dead macrophytes.

  • PDF