• Title/Summary/Keyword: Debye 분산

Search Result 16, Processing Time 0.021 seconds

Electromagnetic Analysis to Design Unclonable PUF Modeling (복제 방지용 PUF 모델링을 위한 전자계 해석)

  • Kim, Tae-Yong;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1141-1147
    • /
    • 2012
  • Electromagnetic analysis to design unclonable PUFs with frequency-dependant materials with Debye dispersion was considered. To simulate FDTD calculations consider that 1-D problem of pulsed plane wave traveling in free space normally incident on air-silicon material interface on dielectric substrate. The pulse traveling wave at a vacuum-medium interface was reflected, and transmitted wave was dissipated. As a result, 1-D PUF modeling with Debye dispersion on dielectric substrate structure can be applied and FDTD calculation for PUF modeling is a good approximation.

Consideration of EM Analysis for Unclonnable PUF (복제 방지용 PUF의 전자계 해석 방안)

  • Kim, Tae-Yong;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.80-82
    • /
    • 2012
  • In this paper, we present electromagnetic modeling to design unclonable PUFs with frequency-dependant materials corresponding to Debye dispersion. To demonstrate FDTD calculations consider that 1-D problem of pulsed plane wave traveling in free space normally incident on air-silicon material interface. The pulse traveling wave at a vacuum-medium interface were reflected, and transmitted wave were dissipated. As a result, 1-D PUF with Debye dispersion material structure can be applied and FDTD calculation for PUF modeling is a good approximation.

  • PDF

Memory-Efficiently Modified JEC (FD)2TD Method for Debye Medium (Debye 매질에 대한 메모리 효율적인 JEC (FD)2TD 수치 해석 기법)

  • Kim Hyun;Hong Ik-Pyo;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.447-454
    • /
    • 2005
  • JEC method for Debye medium is required more memory resources and long calculation time than already well-known method such as RC method. It has been observed that JEC method would be converted to a memory effcient method by a change of discrete convolution integral range. The modified JEC method proposed here requires memory and calculation time similar to RC method, while it has a same or a smaller dispersion error than conventional methods, RC and JEC.

The Detection Method of a Target Position above a Ground Medium using the Buried Antenna (지하 매설 안테나를 이용한 지상 표적의 위치파악 기법)

  • 조정식;김채영;이승학;정종철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.521-531
    • /
    • 2001
  • This paper presents the extraction scheme of the scattered waves by a target above the ground using the buried antenna in a lossy and dispersive medium. The half wave dipole antennas are used to transmit and to receive a signal. The transmission line model as a feeding model is considered to take into account the effect of transmission line in a real system. The ground is modeled by the 2nd order Debye approximation with the dispersion and loss. PLRC algorithm and DPML as absorbing boundary condition are utilized to apply the 2nd order Debye approximation to FDTD. To extract the scattered wave, in addition, we employed the delay time extraction algorithm. The simulations are conducted to observe the variation of magnitude in scattered wave and detection of target position according to the change of moisture content of the lossy medium.

  • PDF

Analysis of Human Exposure to Wideband Pulse EMF Dependent on the Dispersion Algorithm (분산 알고리즘에 따른 광대역 펄스 전자파 노출에 대한 인체 노출량 해석)

  • Ka Won-Suk;Kim Tae-Hong;Kim Jeong-Ran;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.684-693
    • /
    • 2006
  • In this paper, the SA (Specific Absorption) distribution in a human head, exposed to wideband pulse EMF, has been analyzed by taking into account the dispersion characteristics of biological tissues. The dispersive properties of biological tissues are characterized by the 4th Cole-Cole model. Currently, there is no dispersive FDTD algorithm to implement the 4th Cole-Cole model accurately. Thus, in this paper the FDTD methods with the dispersive algorithm for the 1st-order Cole-Cole model and the 3rd-order Debye model were used for SA analysis. The validity of each model has been investigated first, and then the effects of dispersion on SA distribution have been studied.

Phonon Dispersion and Specific Heat in FCC Structure (FCC구조에서 포논분산과 비열)

  • Chung, Jae-Dong;Lee, Kyung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1207-1212
    • /
    • 2004
  • A model for the phonon dispersion relationship for cubic zinc sulfide structure, for example SiC, is developed in terms of two unknown force constants. Born model that incorporates bond bending and bond stretching, is used for the force constants. The force constants are determined by fitting to experimental data. Using only the nearest-neighbor coupling results in $6{\times}6$ sized dynamic matrix. The eigenvalues of dynamics matrix for each wavenumber in 3-D ${\kappa}$ space correspond to frequencies, 3 for optical phonon and 3 for acoustic phonon, which is so-called dispersion relation (${\kappa}$-${\omega}$). The density of state is determined by counting the states for each frequency bin, and the properties such as specific heat and thermal conductivity can be obtained. The specific heat is estimated on this model and compared with experiment and other models, i.e. Debye model, Einstein model and combined Debye-Einstein model. In spite of the simple bond potential model, reasonable agreements are found.

  • PDF

A Dispersive APML using Piecewise Linear Recursive Convolution for FDTD Method (FDTD법을 이용하여 분산매질을 고려하기 위한 PLRC-APML 기법)

  • Lee Jung-Yub;Lee Jeong-Hae;Kang No-Weon;Jung Hyun-Kyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.977-982
    • /
    • 2004
  • In this paper, a dispersive anisotropic perfectly matched layer(APML) is proposed using piecewise linear recursive convolution(PLRC) for finite difference time domain(FDTD) methods. This proposed APML can be utilized for the analysis of a nonlinear dispersive medium as absorbing boundary condition(ABC). The formulation is simple modification to the original AMPL and can be easily implemented. Also it has some advantages of the PLRC approach-fast speed, low memory cost, and easy formulation of multiple pole susceptibility. We applied this APML to 2-D propagation problems in dispersive media such as Debye and Lorentz media The results showed good absorption at boundaries.

Transient Analysis of General Dispersive Media Using Laguerre Functions (라게르 함수를 이용한 일반적인 분산 매질의 시간 영역 해석)

  • Lee, Chang-Hwa;Kwon, Woo-Hyen;Jung, Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.1005-1011
    • /
    • 2011
  • In this paper, we present a marching-on-in-degree(MOD) finite difference method(FDM) based on the Helmholtz wave equation for analyzing transient electromagnetic responses in a general dispersive media. The two issues related to the finite difference approximation of the time derivatives and the time consuming convolution operations are handled analytically using the properties of the Laguerre functions. The basic idea here is that we fit the transient nature of the fields, the flux densities, the permittivity with a finite sum of orthogonal Laguerre functions. Through this novel approach, not only the time variable can be decoupled analytically from the temporal variations but also the final computational form of the equations is transformed from finite difference time-domain(FDTD) to a finite difference formulation through a Galerkin testing. Representative numerical examples are presented for transient wave propagation in general Debye, Drude, and Lorentz dispersive medium.

Characteristic Analysis of Buried Scatterers using the Correlation Coefficient of Scattered Signals under the Noisy Environment (잡음환경 하에서 산란신호 사이의 상관계수를 이용한 매설된 산란체의 특성 분석)

  • 김동호;조평동
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.3B
    • /
    • pp.266-272
    • /
    • 2001
  • 본 논문에서는 지한 탐사용 레이더를 이용한 특정 산란체의 간단한 탐지 방법을 제안하였다. 기본 원리는 매설된 특정 산란체를 기준으로 하여 몇 가지 크기와 모양 및 전기적 특성이 유사한 산란체들로부터 발생되는 산란신호의 차이를 상관함수(correlation function)을 이용하여 탐지하는 것이다. 산란체가 매설된 지하매질로는 레이더의 동작 주파수에 다른 분산과 손실 등의 전기적 특성 변화를 시뮬레이션에 반영하기 위하여 다항 Debye 모델이 사용되었다. 지상 및 지하 매질에서의 3차원 전파(電波) 전파(傳播) 시뮬레이션을 위한 EDTD 방법을 사용하였다.

  • PDF

The Probing of Underground Structures Using Ground Penetrating Radar (지하 탐사용 레이더를 이용한 매설된 구조물의 탐사)

  • Kim, D.H.;Cho, P.D.
    • Electronics and Telecommunications Trends
    • /
    • v.15 no.5 s.65
    • /
    • pp.86-93
    • /
    • 2000
  • 지하 탐사용 레이더를 이용하여 지하에 매설된 구조물의 위치를 파악하고 그에 따른 근사 이미지의 추출 방법을 제안하였다. 기본원리는 구조물에 의해 산란되어 수신 안테나로 유입되는 펄스신호의 지연시간과 크기를 측정하는 데 있으며, 측정의 실용성을 위하여 레이더 탐색경로에 따른 수신신호의 절대치 적분 방법을 사용하였다. 일반적으로 지하매질은 침투 주파수에 따라서 다양한 분산 및 손실 특성을 나타내는데, 이러한 매질 특성은 다항 Debye 모델을 이용하여 기술되었다. 3차원 전파(電波) 전파(傳播)를 위한 시뮬레이션에는 FDTD(Finite Difference Time Domain) 방법을 사용하였다.