• Title/Summary/Keyword: Dean number

Search Result 53, Processing Time 0.021 seconds

Pressure Drop Characteristics in a Coolant Passage With Turning Region and Rotation (냉각유로 내 곡관부 및 유로의 회전이 압력강하에 미치는 영향)

  • Kim, Kyung-Min;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.32-40
    • /
    • 2007
  • The present study investigated local pressure drop in a rotating smooth square duct with turning region. The duct has a hydraulic diameter $(D_h)$ of 26.7mm and a divider wall of 6.0mm or $0.225D_h$. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure coefficient distribution $(C_p)$, the friction factor (f) and the thermal performance $({\eta})$ are presented on the leading, the trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}-turn$ produces Dean vortices that cause the high pressure drop in the turning region. The duct rotation results in the pressure coefficient discrepancy between the leading and trailing surfaces. That is, the high pressure values appear on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. As the rotation number increases, the pressure discrepancy enlarges. In the fuming region, a pair of the Dean vortices in the stationary case transform into one large asymmetric vortex cell, and then the pressure drop characteristics also change.

Detailed Measurement of Heat/Mass Transfer in a Rotating Two-Pass Duct (I) - Effects of Rib Tubulators - (이차 냉각 유로를 가진 회전덕트에서 열/물질전달 특성 (I) - 요철 설치에 따른 영향 -)

  • Kim, Kyung-Min;Kim, Sang-In;Kim, Yun-Young;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.910-920
    • /
    • 2004
  • The heat/mass transfer characteristics in a rotating two-pass duct with and without rib turbulators are investigated in the present study. The square duct has a hydraulic diameter ($D_h$) of 26.7 mm, and $1.5\;mm{\times}1.5\;mm$ square $90^{\circ}$-rib turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The Reynolds number based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number is varied from 0.0 to 0.20. In the smooth duct, the curvature of the $180^{\circ}$-turn produces Dean vortices that enhance heat/mass transfer in the post-turn region. When rib turbulators are installed, heat/mass transfer is augmented 2.5 times higher than that of the smooth duct since the main flow is turbulated by reattaching and separating in the vicinity of the duct surfaces. The duct rotation results in heat/mass transfer discrepancy so that Sherwood number ratios are higher on the trailing surface in the first-pass and on the leading surface in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent heat/mass transfer characteristics also change. As the rotation number increases, the heat/mass transfer discrepancy enlarges.

A Study on the Flow Characteristics of Developing Transitional Steady Flows in a Curved Duct by Using Laser Doppler Velocimeter (I) (곡관덕트에서 LDV를 이용한 천이정상유동의 유동특성에 관한 연구(I))

  • 봉태근;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.96-101
    • /
    • 2000
  • In this paper, an experimental investigation of characteristics of developing transitional steady flows in a square-sectional 180 urved duct is presented. The experimental study is carried out to measure axial velocity profiles by using Laser Doppler Velocimeter (LDV) system. The flow development is found to depend upon Dean number and curvature ratio. For transitional steady flows, the maximum velocity position of axial velocity profiles begins to incline toward the outer wall from $\phi$=$30^{\circ}$bended angle, velocity profiles in center of the duct have lower value than those of the inner and outer walls because of the centrifugal forces.

  • PDF

A Study on the Flow Characteristics of developing transitional Steady Flows in the Entrance Region of a Curved Duct (곡관덕트의 입구영역에서 천이정상유동의 유동특성에 관한 연구)

  • 봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In this paper an experimenatal investigation of characteristics of developing ransitional steady flows in a square-sectional $180^{\circ}$ curved duct is presented, The experimental study is carried out to measure axial velocity profiles secondary flow velocity profiles and entrance length by using Laser Dopper Velocimeter(LDV) system. The flow development is found to depend upon Dean number and curvature ratio. Of special interest is the secondary flow generated by centrifugal effects in the plane of the cross-section of the duct. The secondary flows becomes strong from $120^{\circ}$ of bended angle on the duct. The entrance length of transitional steady flow is obtained to $120^{\circ}$ of bended angle of the duct in this experimental conditions.

  • PDF

Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs (90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

Study on the Similarity of Laminar Flows between in Orthogonally Rotating Square Duct and Stationary Curved Squared Duct (수직축을 중심으로 회전하는 직관과 정지한 곡관내에서의 층류 유동의 유사성 비교)

  • Lee, Gong-Hui;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1683-1691
    • /
    • 2000
  • In this study, it is numerically revealed that the secondary flow due to the Coriolls force in a straight duct rotating about an axis perpendicular to that of the duct is analogous to that caused by the centrifugal force in a stationary curved duct. Dimensionless parameters $K_{LR}=Re/\sqrt{Ro}$ and Rossby number in a rotating straight duct were used as a set corresponding to Dean number and curvature ratio in a stationary curved duct. When the value of Rossby number and curvature ratio is large, it is shown that the flow field satisfies the `asymptotic invariance property`, that is, there are strong quantitative similarities between the two flows such as friction factors, flow patterns, and maximum axial velocity magnitudes for the same values of $K_{LR}$ and Dean number.

A Numerical Model of Nonlinear Stream Function Wave Theory by the Least Squares Method (최소자승법을 사용한 유량함수 비선형 파랑이론의 수치모형)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.340-352
    • /
    • 1994
  • A numerical model of nonlinear stream function wave theory evolved from Dean's model (1965) is presented. The stream function theory has been evaluated to be an accurate and useful tool for engineering applications. Effects of damping coefficient employed in a linearized simultaneous equation and number of points in the numerical integration of model on numerical solutions are assessed. Most accurate wave characteristics calculated by the present model are tabulated using revised Dean's Table (Chaplin, 1980) input parameters. Since the well-known feature of nearly breaking waves that with increasing wave steepness the wave length as well as integral properties have a maximum prior to the limiting wave height is represented by the model, the accuracy of model can be proved.

  • PDF

A Study on the Heat Transfer Phenomena in Coiled Tubes with Variable Curvature Ratios (곡률비가 다양한 코일 튜브에서의 열전달현상에 관한 연구)

  • Han, Kyuil;Park, Jong-Un
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1509-1520
    • /
    • 1998
  • An experiment was carried out for the fully developed turbulent flow of water in tube coils on the condition of uniform heat flux. The present work was conducted for various ranges for Dean number(1794~1321), Prandtl number (2.5~4.5), curvature ratio parameters (22~60). Heat transfer to steady viscous flow in coiled tubes of circular cross section was studied for fully developed velocity and temperature fields under the thermal boundary condition of uniform heat flux. The peripherally local Nusselt number correlated as a function of Dean and Prandtl numbers. We studied the flow in heat coiled tubes under the influence of both centrifugal and buoyancy forces in order to gain insight into the flow pattern. In the present study, we obtained three emperical formulas, $Nu_v=0.0231Re^{0.84}Pr^{0.4}(a/R)^{0.13}$ (vertical) $Nu_c=0.0241Re^{0.86}Pr^{0.4}(a/R)^{0.08}$ (corrugated) $Nu_h=0.0227Re^{0.84}Pr^{0.4}(a/R)^{0.09}$ (horizontal).

Flows Characteristics of Developing Turbulent Pulsating Flows in a curved Square Duct (곡관덕트내의 입구영역에서 난류 맥동유도의 유동특성)

  • 봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.533-542
    • /
    • 1999
  • In this study the flow characteristics of developing turbulent pulsating flows in a square-sec-tional 180。 curved duct are investigated experimentally. The experimental study of air flow in a square-sectional curved duct is carried out to measure axial velocity distribution secondary flow velocity profiles and wall shear stress distributions by using a Laser Doppler Velocimetry system with the data acquisition and processing system of Rotating Machinery Resolver (RMR) and PHASE software at the entrance region of the duct which is divided into 7 sections from the inlet(${{\o}}=0_{\circ}$) to the outlet (${{\o}}=180_{\circ}$) in $30_{\circ}$ intervals. The results obtained from the study are summarized as follows: (1) The time-averaged critical Dean number of turbulent pulsating flow(De ta, cr) is greater than $75{\omega}+$ It is understood that the critical Dean number and the critical Reynolds number are related to the dimensionless angular frequency in a curved duct. (2) Axial velocity profiles of turbulent pulsating flows are of an annular type similar to those of turbulent stead flows. (3) Secondary flows of trubulent pulsating flows are strong and complex at the entrance region. As velocity amplitudes(A1) become larger secondary flows become stronger. (4) Wall shear stress distributions of turbulent pulsating flows in a square-sectional $180_{\circ}$ curved duct are exposed variously in the outer wall and are stabilized in the inner wall without regard to the phase angle.

  • PDF

The Effect of the Variation of Hollow Fiber Diameter and Curvature and Turn Number on Performance for Microfiltration Helical Modules (Microfiltration Helical Module들에서 Hollow Fiber의 Diameter과 Curvature 및 Turn수의 변화에 따른 성능변화에 관한 연구)

  • 이광현
    • Membrane Journal
    • /
    • v.7 no.2
    • /
    • pp.84-94
    • /
    • 1997
  • The performances of both module sets made by different methods for helical module were compared. All experiments were conducted simultaneously at the same transmembrane pressure and energy cosumption per membrane area. The effects of Dean vortices for reducing concentration polarization and fouling were low for the first module set. The increase of 115% for permeate flux improvement(permeate flux difference ${\times}100$/pemeate flux of linear module) was measured. The second module set was more effective in reducing concentration polarization and fouling.

  • PDF