• Title/Summary/Keyword: Dead time compensation

Search Result 94, Processing Time 0.029 seconds

Improved Performance of SVPWM Inverter Based on Novel Dead Time and Voltage Drop Compensation (새로운 데드타임 및 전압강하의 보상을 이용한 SVPWM 인버터의 성능개선)

  • Lee, Dong-Hui;Gwon, Yeong-An
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.618-625
    • /
    • 2000
  • Recently PWM inverters are widely utilized for many industrial applications e.g. high performance motor drive and PWM techniques are newly developed for an accurate output voltage. Among them space voltage vector PWM(SVPWM) inverter has high voltage ratio and low harmonics compared to the conventional sinusoidal PWM inverter. However output voltage of PWM inverter is distorted and has error duet o the conducting voltage drop of switching devices and the dead time that is inevitable to prevent the shoot-through phenomenon. This paper investigates 3-phase SVPWM inverter which has a new compensation method against dead time and voltage drop. Proposed algorithm calculates gate pulse periods which directly compensates the dead time and nonlinear voltage drop without modification of reference voltages. Direct compensation of gate pulse periods produces exact output voltage and does not need additional circuits. The propose algorithm is verified through the simulation and experiments.

  • PDF

A Novel Dead-Time Compensation Method using Disturbance Observer

  • Youn, Myung-Joong;Moon, Hyung-Tae;Kim, Hyun-Soo
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 2002
  • A new on-line dead-time compensation method for a permanent magnet (PM) synchronous motor drive is proposed. Using a simple disturbance observer without any additional circuit and off-line experimental measurement, disturbance voltages in the synchronous reference dq frame caused by the dead time and non-ideal switching characteristics of power devices are estimated in an on-line manner and fed to voltage references in order to compensate the dead-time effects. The proposed method is applied to a PM synchronous motor drive system and implemented by using software of a digital signal processor (DSP) TMS320C31. Simulations and experiments are carried out for this system and the results well demonstrate the effectiveness of the proposed method.

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

On-Line Feed-Forward Dead-Time Compensation Method (온라인 전향 데드타임 보상기법)

  • 김현수;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.267-274
    • /
    • 2004
  • In this paper, a new on-line dead-time compensation method is proposed. The output voltage errors due to the dead-time effect is considered as disturbance voltages. The magnitude of the disturbance voltages is estimated using a time delay control technique and the disturbance voltages are calculated using the estimated values, measured currents, and position information. The calculated disturbance voltages are fed to voltage references in order to compensate the dead-time effect. The proposed method is applied to a PM synchronous motor drive system and implemented in a digital manner using a digital signal processor (DSP) TMS320C31. The experiments are carried out for this system to show the effectiveness of the proposed method and the results show the validity of the proposed method.

A study to improve the Performance of induction motor using Min Max algorithm and dead time compensation method (Min Max 알고리즘과 Dead Time 보상기법에 의한 유도전동기의 성능 향상에 관한 연구)

  • Kim, Hyung-Gu;Yang, Oh
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.976-978
    • /
    • 1999
  • Recently PWM invertor is broadly used for control of induction motor. The invertor is able to generate sin wave current from high speed switching power device such as IGBT. However the invertor is disturbed by dead time inevitably needed to prevent a short of the DC link voltage, and the dead time mainly causes distortions of the output current. In this Paper the dead time compensation method which corrects the voltage error from dead time, and Min Max algorithm enlarging the operating voltage of PWM were Proposed. This method can be implemented by software programming without any additional hardware circuit. The proposed algorithms were implemented by DSP(TMS320C31, 40MHz) and FPGA(QL2007, Quick Logic) described in VHDL. and applied to 3 phase induction motor(2.2 KW) to show the superior performance

  • PDF

A Dead Time Compensation Algorithm of Independent Multi-Phase PMSM with Three-Dimensional Space Vector Control

  • Park, Ouk-Sang;Park, Je-Wook;Bae, Chae-Bong;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.77-85
    • /
    • 2013
  • This paper proposes a new dead time compensation method of independent six-phase permanent magnet synchronous motors (IS-PMSM). The current of the independent phase machines contains odd-numbered harmonics because of the dead time and the nonlinear characteristics of the switching devices. By using the d-q-n three-dimensional vector analysis, these harmonics can be extracted at the n-axis current. Thus, the current distortion can be compensated by controlling the n-axis current of the IS-PMSM to zero. The proposed method is simple and can be easily implemented without additional hardware setup. The validity of the proposed compensation method is verified with simulations and several experiments.

Inverter Output Voltage Synthesis Using Novel Dead Time Compensation (새로운 데드타임보상법을 이용한 인버터 출력전압의 합성)

  • 최종우;설승기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.4
    • /
    • pp.453-459
    • /
    • 1995
  • In this paper, a novel dead time compensation method is presented which produces inverter output voltages equal to reference voltages. An experimental result is also presented to demonstrate the validity of the proposed method. It shows that the compensation of the dead time is possible up to a sub-microsecond range. And the reference voltage can be used as a feedback value, which is essential for sensorless vector control and flux estimation. The method is based on space vector PWM strategy and can be carried out automatically by an inverter controller for initial set-up without any extra hardware.

  • PDF

An Advanced Dead-Time Compensation Method for Dual Inverter with a Floating Capacitor (플로팅 커패시터를 갖는 이중 인버터를 위한 향상된 데드 타임 보상 기법)

  • Kang, Ho Hyun;Jang, Sung-Jin;Lee, Hyung-Woo;Hwang, Jun-Ho;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.271-279
    • /
    • 2022
  • This paper proposes an advanced dead-time compensation method for dual inverter with a floating capacitor. The dual inverter with floating capacitor is composed of double two-level inverters and a bulk electrolytic capacitor. The output voltage of the dual inverter is dropped by the conduction voltage of the power semiconductors. The voltage drop and dead-time cause the fundamental and harmonic distortions of output currents. When supplied power for OEW-load is low, the dual inverter operates as single inverter for effective operation. The dead-time compensation method for the dual inverter operated as single inverter is needed for reliability. The proposed method using band pass filter in this paper compensates dead-time, dead-time error and changed voltage drop error of power semiconductors for the dual inverter and dual inverter operated as single inverter. The effectiveness of the proposed method is verified by simulation results.

A Study on the Space Vector PWM Inverter without Dead Time (데드 타임 없는 공간 벡터 전압 변조 인버터에 관한 연구)

  • Seo Il-Soo;Song Eui-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In a voltage source inverter, the dead time is necessary to prevent short circuits in the dc link. The dead time effect appears as a distortion of output voltages and currents. In recent years, the dead time compensation methods have been investigated in many literatures. This paper presents not the dead time compensation by sensing and calculation but the dead time elimination. The proposed inverter system doesn't need to sense load current and to calculate dead time. Adding some transformers to each leg, dead times in the inverter system are eliminated automatically. The proposed method is analyzed on each mode and verified through simulation results.

A New Dead-time Compensation Method using Disturbance Observer (외란관측기를 이용한 새로운 데드타임 보상법)

  • 김현수;문형태;김명복;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.252-255
    • /
    • 1999
  • A new dead-time compensation method using a disturbance observer is proposed. The dead-time causes the voltage distortion and it can be considered as the disturbance voltage. In this paper, the disturbance voltage is estimated by minimal order observer in the d-q frame and the estimated disturbance voltage is summed with voltage command by a feed-forward. The experiments are carried out for the DSP-based BLDC motor drive system and the results show the effectiveness of the proposed method.

  • PDF