• Title/Summary/Keyword: Dead load

Search Result 345, Processing Time 0.031 seconds

Verification and Mitigation of Seismic Failure in Concrete Piers under Near-field Earthquakes

  • Ikeda, Shoji;Hayashi, Kazuhiko;Naganuma, Toshihiko
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.1-11
    • /
    • 2007
  • This paper verifies the difference of the seismic behavior and seismic damage of the neighboring two reinforced concrete piers damaged by the 1995 Hyogoken Nanbu earthquake. The two piers were almost the same size, carrying slightly different dead load, and were provided with the same reinforcement arrangement except the amount of longitudinal reinforcement at the bottom portion of the piers. The pier with more reinforcement was completely collapsed due to this near field earthquake by shear failure at the longitudinal reinforcement cut-off while the other was only damaged at the bottom by flexure even though the longitudinal reinforcement cut-off was also existed at the mid height of the pier. According to the results of the pseudo dynamic test, the seismic damage was recognized to be greatly dependent on the ground motion characteristics even though the employed ground motions had the same peak acceleration. The severe damage was observed when the test employed the seismic wave that had strong influence to the longer period range compared to the initial natural period of the pier. On the other hand, based on the similar model experiment, the defect of gas-pressure welded splice of longitudinal reinforcement was revealed to save the piers against collapse due to the so-called fail-safe mechanism contrary to the intuitive opinion of some researchers. It was concluded that the primary cause of the collapse of the pier was the extremely strong intensity and peculiar characteristics of the earthquake motion according to both the site-specific and the structure-specific effects.

Transverse Stress of Slabs due tp Longitudinal Prestressing in Prestressed Concrete Box Girders (프리스트레스트 콘크리트 박스 거더의 종방향 프리스트레싱에 의한 슬래브의 횡방향 응력)

  • Yang, In-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.679-688
    • /
    • 2003
  • For box girders in which the longitudinal tendon is profiled in the inclined webs, longitudinal prestressing force will induce transverse effects as well as longitudinal ones. In this paper, the method to estimate transverse effects induced by longitudinal prestressing is proposed. The concept of transverse equivalent loading which is calculated through longitudinal prestressing analysis is developed. The transverse stress in slabs of box girders due to longitudinal prestressing are investigated. The comparison of numerical results of the proposed method and those of folded plate method represents that the method is reasonable. Numerical analyses are carried out depending on the parameters such as web inclination and ratio of girder length to tendon eccentricity. Analysis results show that when only prestressing are considered the magnitude of transverse stress in slabs of box girder is not so large. However, if the other stresses due to dead and live load et al. are superposed on these stresses, it may be that the longitudinal prestressing effects are significant.

Damage Evaluation of Glass Fiber/PET Composite Using Acoustic Emission Method (음향방출법을 이용한 Glass Fiber/PET 복합재료의 손상평가)

  • 김상태;김덕윤
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • In this study, damage evaluation of glass fiber reinforced thermoplastic composites was investigated with acoustic emission method. Specimens of 1.7mm thickness laminate were made from PET and 7 layers o171ass fabrics. Notch and impact loading were added to the specimen and normal tensile test and tensile test with the dead load were carried out. AE signal was measured as the functions of notch ratio to the width0 and impact energy in order to find out the correlation between fracture mode and AE parameters. The result has shown that low amplitude of AE signal was due to the microcrack of matrix and its growth, whereas the amplitude in the mid range was the response to the delamination and interfacial separation. In the range of high amplitude above 90dB. the fracture of glass fabric was found. Tensile strength decreased with increasing notch ratio to the width and impact energy because of tile effect or delamination, the cracking of matrix and stress concentration. In proportion to the size of damaged area. AE signal showed its wider range of frequency and energy as well as increased number of hits.

  • PDF

Optimum topology design of geometrically nonlinear suspended domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.667-694
    • /
    • 2015
  • The suspended dome system is a new structural form that has become popular in the construction of long-span roof structures. Suspended dome is a kind of new pre-stressed space grid structure that has complex mechanical characteristics. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The length of the strut, the cable initial strain, the cross-sectional area of the cables and the cross-sectional size of steel elements are adopted as design variables and the minimum volume of each dome is taken as the objective function. The topology optimization on lamella dome is performed by considering the type of the joint connections to determine the optimum number of rings, the optimum number of joints in each ring, the optimum height of crown and tubular sections of these domes. A simple procedure is provided to determine the configuration of the dome. This procedure includes calculating the joint coordinates and steel elements and cables constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). This paper explores the efficiency of lamella dome with pin-joint and rigid-joint connections and compares them to investigate the performance of these domes under wind (according to the ASCE 7-05), dead and snow loading conditions. Then, a suspended dome with pin-joint single-layer reticulated shell and a suspended dome with rigid-joint single-layer reticulated shell are discussed. Optimization is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for suspended domes.

A Stability Analysis for Vehicle Impact in U-Channel Segmental Concrete Bridges (U-채널 세그멘탈 콘크리트 교량의 차량충돌에 대한 안전성 분석)

  • Choi, Dong-Ho;Na, Ho-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.17-25
    • /
    • 2010
  • This paper studied on stability of the U-channel segmental concrete bridge under vehicle-impact loads. The U-channel bridge has advantages in that it reduces an additional dead load and the edge beams role as a barrier. But it has a dangerous factor which collapses the bridge structure when the edge beams are ruptured. Therefore, it is necessary to verify behaviors of the bridge system under vehicle-impact loads. Static and dynamic vehicle impact simulations were carried out on the basis of AASHTO LRFD design specifications. In case of the static analysis, equivalent static loads specified in the AASHTO codes are loaded on the edge beams and in case of the dynamic analysis, FEM vehicle models are modeled by applying the dynamic test specifications of AASHTO codes. As a result, it is shown that U-channel bridge system has sufficient safety against static and dynamic impact loads specified in the AASHTO LRFD design specifications.

Deflection Analysis of Long Span Structures Using Under-Tension System (언더텐션 시스템을 이용한 장스팬 구조의 처짐 거동 해석)

  • Park, Duk-Kun;Lee, Jin;Ham, Su-Yun;Ahn, Nam-Shik;Lee, Ki-Hak;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.66-69
    • /
    • 2008
  • This study presents deflection analysis of long span structures for pedestrian bridge on crossroads. For long span structures, the size of structural members should be determined considering the esthetic view and vehicle below the structures. As a result, the slenderness ratio of members is increased and the structure may be suffered from significant deflection. The under-tensioned system on lower part of the structure, is applied in order to reduce the deflection and the size of members. In this regard, the under-tensioned system enables the load of upper parts to carη to the end of beam by means of tensional force in cable. In addition, effectiveness of under-tensioned system can be different depending on the size of cable, the number and spacing of posts. This study is performed with conforming the effect by analytical various parameters (size of cable, number and spacing of post). Dead and live loads is supposed to apply in the slab, and the analytical result by MIDAS program are presented addressing the effect of the under-tensioned system.

  • PDF

Evaluation of Analysis Code of Corrugated Steel Plate Lining in Cut-and-Cover Tunnel (개착식 터널에서 파형강판 라이닝의 해석 기법 평가)

  • Kim, Jung-Ho;Kim, Nak-Young;Lee, Yong-Jun;Lee, Seung-Ho;Hwang, Young-Chul;Cho, Chul-Shin;Chung, Hyung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1316-1323
    • /
    • 2005
  • Most tunnel lining material which has been used in the domestic is a concrete. But many problems as the construction period, the cost, and the crack occurrence for the design, construction, and management were happened in the concrete lining. For this reason, many research institutes like the Korea Highway Corporation recognize the necessity of an alternate material development and grow on the interest for that. So in this study, the behaviour characteristics for the application of the Corrugated Steel Plate Lining in cut-and-cover tunnel are evaluated as several conditions for the backfill height, the cutting slope, and the relative density of backfill soil are changed. In addition, through using that conditions, CHBDC(2000, Canadian Highway Bridge Design Code) is evaluated if it could be applied to the design by comparing with the numerical analysis results. As the behaviour characteristics of the Corrugated Steel Plate Lining by CHBDC and the static numerical analysis are analyzed, both the methods show the same linear increases of the compressive stress according to the increase of the backfill height. The CHBDC of the dead load condition has very similar tendency by comparing with the result of the static numerical analysis.

  • PDF

Crown Fuel Characteristics of Japanese Red Pine (Pinus densiflora) in Mt. Palgong, Daegu (대구 팔공산 지역의 소나무 수관층 연료 특성)

  • Koo, Kyo-Sang;Lee, Byung-Doo;Won, Myoung-Soo;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.52-56
    • /
    • 2010
  • Crown fuel characteristics such as crown bulk density, crown base height, and fuel moisture content of Japanese red pine were analyzed. Ten trees in Mt. Palgong at Daegu, were destructively sampled and their crown fuels were weighed separately for each fuel category. Fuel content of live and dead crown component were 53%, and 15.3%, respectively. Foliar moisture content was 56%. Needles and twigs with diameter less than 1cm diameter accounted for 16.2%, 55% of total and crown fuel load. Average crown bulk density of Japanese red pine was 0.24 kg/$m^3$, effective crown fuel bulk density was 0.1325 kg/$m^3$.

A Study on Synchronization Control Technique of Dual-Servo Press System (듀얼 서보모터 구동형 프레스 시스템의 동기화 제어기법 연구)

  • Na, Sang-Gun;Kwon, O-Shin;Kang, Jae-Hoon;Heo, Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.206-215
    • /
    • 2013
  • In this paper, a synchronization control technique of dual-servo motor driven press system is proposed. An independent cascade PID control technique has been applied to the conventional press system for advancement of control stability. However, it is not easy to reduce synchronous error using the independent cascade PID control technique when some different load disturbances are involved in each motor. The eccentric error of the slide caused by the problem degrade the control performance of the BDC(Bottom Dead Center). In order to achieve reduction of the synchronous error between two servo motors and accurate position control simultaneously, a new control scheme comprised with cascade PID control loop and cross-coupling loop is proposed. In simulation using Matlab SIMULINK, the AC servo system is designed. The control performance of proposed technique is compared with conventional control technique to the model of AC servo system. Also, the sub-scale model of dual-servo motor driven press system which can replicate the slide motion is constructed for experimental verification for the performance of the proposed control technique. The cross-coupling control technique reveals more precise and stable performances in the position and synchronization controls.

Fabrication of a Multiplexing Sensor Probe for Measuring the Blade Deflection of a Wind Power Generator (풍력발전기 블레이드 처짐 측정을 위한 다중화 센서 탐촉자 설계 제작)

  • Kim, Ji-Dea;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.178-185
    • /
    • 2014
  • This paper describes a fabrication multiplexing sensor probe that employs a fiber Bragg grating(FBG) based on multiple measurements to determine the blade deflection of a wind power generator the reliability analysis of this probe is also presented. To diminish the temperature sensitivity of the FBG sensor, we form multiple CFRPs onto the upper and lower layers of the FBG and package it with an epoxy resin. As a result, the depth of the CFRP is 1mm, and the temperature sensitivity is $2.39pm/^{\circ}C$. We construct a sensor network utilizing the fabricated sensor with a blade beam model. As the number of pendulums is increased on the fore-end of the beam, the strain value is measured. The strain variation is calculated from the measurement of the load on the blade beam model by monitoring the strain of the FBG sensor. When the linear equation is applied, the strain error is 0.4% and when the finite difference method is used, the tip deflection error is 3.3%. The displacement error derived from the strain value of the FBG sensor is 4.39%. The calculated result between the measured value of the dead-end of the beam and the strain is less than 2.46% tip distortion error. Therefore, our proposed multiplexing sensor probe is a low-cost and high-reliability solution for a commercial wind power generator.