• Title/Summary/Keyword: De-icing salts

Search Result 23, Processing Time 0.029 seconds

An Experimental Study on the Deterioration of Concrete Due to De-icing Salts (융빙제에 의한 콘크리트의 내구성능 저하에 관한 실험적 연구)

  • 고경택;류금성;이종석;김도겸;김성욱;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.973-978
    • /
    • 2001
  • In clod weather regions, a strong seasonal wind brings sea salts to the land. In addition to it, recently, the spreading amount of de-icing salts has increased numerously for the purpose of removing snow and ice. Thus the salts environment around concrete structures becomes so severe that various damages of concrete due to applied salts will be brought up. It is briskly carried out study on effects of do-icing salts on concrete in America, Japan, European countries. However, there are not test method for the deterioration of concrete subjected to both freezing-thawing and chloride attack in Korea. In this study, we conduct on test for the compound deterioration subjected to both freezing-thawing and chloride attack, in order to investigate effects of de-icing salts on the deterioration of concrete.

  • PDF

The Investigation of Deteriortion of Concrete Structures due to the De-icing Salts (융빙제 사용으로 인해 열화된 콘크리트 구조물의 내구성 조사)

  • 문한영;김성수;류재석;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.77-82
    • /
    • 1996
  • The study was performed for the purpose of obtaining the fundamental data to improve the durability of concrete structures due to de-icing salts. To assume the degree of concrete deterioration, soluble chloride content in concrete, the depth of carbonation and compressive strength of core specimens were measured. The porgress of corrosion of concrete bridge was electrochemically monitored. The results show that the concrete structure was deteriorated and reinforced steel in concrete was corroded due to de-icing salts.

  • PDF

Evaluation on De-Icing Salts Laden Environment of Road in Seoul (제설제에 노출된 서울시내 도로 시설물의 열화 환경 분석)

  • Yoon, In-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • De -icing salts have been used commonly in areas where snow or ice is a seasonal safety hazard for roadway, however, the salts is one of main causes on serious deterioration of road infrastructures in crowded urban city like Seoul. In order to establish maintenance strategy of road infrastructures under de-icing salts laden environment, it is necessary to examine environmental characteristics and its response to the existing facilities. The purpose of this study is to evaluate the deterioration environment of road infrastructures. Additional purpose is to develop a design model and details for durability design of infrastructures under de-icing salts laden environment, considering mainly a build-up rate of surface chlorides. Concentration of external chloride solution and surface chloride content were calculated at the level of average de-icing salts for 5 years, ratio of auxiliary road of 17.5 to 30%, and effective exposure area to snow 50 to 80%. The chloride build-up rate was 0.073 ~ 0.077% / year and the maximum surface chloride content was calculated to be 2.2 ~ 2.31% by concrete wt. This study is expected to be used for establishing integrated strategy of road infrastructures, such as predicting chloride profiles or degree of chemical corrosion to exposure concrete.

Neuro-fuzzy model of concrete exposed to various regimes combined with De-icing salts

  • Ghazy, Ahmed;Bassuoni, Mohamed. T.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.649-659
    • /
    • 2018
  • Adaptive neuro-fuzzy inference systems (ANFIS) can be efficient in modelling non-linear, complex and ambiguous behavior of cement-based materials undergoing combined damage factors of different forms (physical and chemical). The current work investigates the use of ANFIS to model the behavior (time of failure (TF)) of a wide range of concrete mixtures made with different types of cement (ordinary and portland limestone cement (PLC)) without or with supplementary cementitious materials (SCMs: fly ash and nanosilica) under various exposure regimes with the most widely used chloride-based de-icing salts (individual and combined). The results show that predictions of the ANFIS model were rational and accurate, with marginal errors not exceeding 3%. In addition, sensitivity analyses of physical penetrability (magnitude of intruding chloride) of concrete, amount of aluminate and interground limestone in cement and content of portlandite in the binder showed that the predictive trends of the model had good agreement with experimental results. Thus, this model may be reliably used to project the deterioration of customized concrete mixtures exposed to such aggressive conditions.

Chloride Diffusion of Concrete in Presence of De-icing Salt (제설제로부터 기인한 염화물의 콘크리트 확산특성)

  • Cheong, Hai-Moon;Ahn, Tas-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.507-510
    • /
    • 2005
  • In winter, a large amount of de-icing salts such as $CaCl_2$, NaCl have been used on highways for road safety. They make concrete structures deteriorated. In this study, the chloride diffusion of concrete in presence of de-icing salt was investigated. The diffusion coefficient of chloride in presence of $CaCl_2$ solution was larger than in presence of NaCl solution. Therefore, it is necessary to assess chloride profile in presence of $CaCl_2$ by different way from the case in presence of NaCl solution or seawater.

  • PDF

The Seasonal Impacts of De-icing Salts on Soil and Vegetation in Chung-ju City (충주시 가로변 토양과 가로수 식생에 미치는 계절별 제설제의 영향)

  • Kim, Jae-Young;Park, Ju-Young;Yoon, Young-Han;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.993-998
    • /
    • 2017
  • De-icing salts applied to roads during winter enable safe driving conditions. However, these salts are eventually displaced to roadside areas at which they can negatively impact soil, vegetation, and water resources. This purpose of this study is to determine the relationship between foliar damage ratio (NY = 0-25%, SY = 26-50%, CY = 51-75%) on roadside trees (Ginko biloba) and seasonal impact of de-icing salts on soil and vegetation. Thirty roadside trees were selected at 8 m intervals between the Konkuk and Judeok intersections in Chung-ju city. The results reveal that seasonal soil acidity is relatively alkaline for foliar damage ratio of Ginko biloba was CY compared to NY. Also, electronic conductivity of each seasonal sampling was recorded as high in winter and spring, whereas the opposite trend is observed in summer. Various plants species were identified in abundance under roadside trees within NY roadside sections. These same species were observed in reduced numbers within CY sections. Strong negative correlations were identified between foliar damage ratio on roadside trees and vegetation. This relationship may be a method to use in predicting the accumulation of de-icing salt and visible injuries on roadside trees.

Seasonal Variations of De-icing Salt Ions Harvested from Soils and Plants according to the Salt Damage of Pinus densiflora f. multicaulis on Roadsides (가로변 반송 염해정도에 따른 토양 및 식물체 내 염류이온의 계절별 변화)

  • Lee, Jae-Man;Park, Sun-Young;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.395-402
    • /
    • 2020
  • This study was conducted to analyze seasonal variations of de-icing salt ions harvested from soils and plants according to salt damage of Pinus densiflora f. multicaulis, a evergreen conifer, on roadsides. Pinus densiflora f. multicaulis was divided into three groups referred to SD, ND, and WD (serious salt damage (SD) = 71-100%, normal salt damage (ND) = 31-70%, and weak salt damage (WD) = 0-30%) based on the degree of visible foliage damage, and measured acidity (pH), electrical conductivity(EC), and de-icing salt ions (K+, Ca2+, Na+, and Mg2+) harvested from soils and plants. The results indicated that acidity, electrical conductivity, and de-icing salt ions of soils and plants were significantly affected by seasonal variation and salt damage. In addition, a strong positive liner relationship was observed in plants between the concentration of de-icing salts and salt damage in spring, while the relationship among seasonal variation and salt damage in soil were not significant. The results from this study has important implications for the management of conifer species in relation to salinity and roadsides maintenance.

Ice Melting Capacity Evaluation of Applicable Materials of De-icing Fluid for High Speed Railway Rolling Stock (고속철도차량용 제빙액으로의 적용가능물질에 대한 융빙성능 평가)

  • Park, Gyoung-Won;Lee, Jun-Ku;Lee, Hong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.384-388
    • /
    • 2019
  • In winter season, the snow and ice accretion on the bottom of the high speed railway rolling stock and boogie part has fallen at a high speed from the ballast section (gravel section for the transmission of the rolling stock load received by sleepers and fixing sleepers), causing the gravel to be scattered, thereby damaging the railway rolling stock structures and facilities. In order to solve these problems, the gravel scattering prevention net, manual de-icing, and movable hot air machine were used, but their efficiency was low. For the more efficient de-icing than ever before, an optimum material for de-icing fluid for high speed railway rolling stock was developed by evaluating the ice melting capacity, kinematic viscosity, evaporation of the material used as a chemical de-icing fluid. Four kinds of organic acid salts (sodium formate, sodium acetate, potassium formate and potassium acetate) and two different alcohols (propylene glycol, glycerol) were used as evaluation materials. Potassium formate, potassium acetate, and propylene glycol had similar ice melting capacities in the indoor test, but the propylene glycol showed the best ice melting capacity in spraying the system simulation test. This is because the kinematic viscosity of propylene glycol was 2.989029 St, which is higher than those of other materials therefore, it could stay longer on the ice and de-icing. In addition, potassium formate and potassium acetate were difficult to be used since the crystals precipitated and adversely affected the appearance of the rolling stock. The propylene glycol is the most optimum as an de-icing fluid for the high speed railway rolling stock.

Deterioration Properties for the Concrete Decks of Bridge Structure Effected Simultaneously on the Chlorides of De-icing Salts and Freeze-Thaw (제설제의 염화물과 동결융해의 영향을 동시에 받는 교량구조물 콘크리트 바닥판의 열화특성)

  • Shin, Seung-Moon;Park, Ju-Kyung;Sun, Yun-Suk;Choi, Sung-Min;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.137-139
    • /
    • 2007
  • Recently, the research on durability of concrete proceed rapidly in the building industry. Deterioration due to do-icing salts occurs in practice in bridge structure, dike, barrier and similar structure. This paper reports the results of effect of chlorides on the freeze-thaw properties of concrete bridge deck in winter. The case fresh water condition where the concrete will receives a freez-thaw effect compared to decrease of durability quotient a lot occurs is a possibility of knowing from brine condition.

  • PDF

Investigation on Translocation of De-icing Salts influenced by the Intensity of Foliar Damage of Roadside Trees in Chung-ju City (충주시 가로수의 황변정도에 따른 토양 내 제설제 성분의 흡수이행성 평가)

  • Kim, Jae-Young;Kim, Won-Tae;Yoon, Young-Han;Ju, Jin-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Use of de-icing salts results in accumulation of high concentrations of ions on roadside soils and tree. The purpose of this study isto determine translocation of seasonal impact of exchangeable cations originating from de-icing salt on roadside surface soil-plant influenced by the intensity of foliar damage (NY = 0-25%, SY = 26-50%, CY = 51-75%) of trees. This paper investigated the concentration of four exchangeable cations ($K^+$, $Ca^{2+}$, $Na^+$, and $Mg^{2+}$) on the roadside surface soil. The tree (Ginko biloba) samples were collected from the Konkuk and Judeok intersections in Chung-ju city. The sequential extraction procedure was applied to 120 soil samples of the soilsurface and 30 tree samples. Four cation exchange ions were determined by ICP-OES. The content of four exchangeable cations present on roadside soil was found to be the lowest in NY but highest in CY from tree pits in the order of NY < SY < CY. Especially, the results were apparent during spring time compared to other seasons. Soil collected from tree pits had the highest concentration of $Ca^{2+}$ possibly due to a higher volume of traffic on those streetsresulting in splashing of more calcium chloride ($CaCl_2$). The analysis of three exchangeable cations ($K^+$, $Mg^{2+}$, and $Na^+$) in the tree leaves revealed higher levels than roadside surface soil when foliar damage ratio increased in the order of NY < SY < CY in summer. In addition, a strong positive linear relationship was observed between the concentration of exchangeable cations in soil and trees. It is hypothesized that the results of this study can be a valuable baseline for managing de-icing salt on roadside soil and trees, in order to mitigate the salt stress that can damage the roadside soil and trees.