• Title/Summary/Keyword: De-icing

Search Result 86, Processing Time 0.029 seconds

COMPUTATIONAL ANALYSIS OF AN ELECTRO-THERMAL ICE PROTECTION SYSTEM IN ATMOSPHERIC ICING CONDITIONS (대기 결빙 조건에서의 전기열 방식 결빙보호 시스템에 관한 전산해석)

  • Raj, L.P.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Atmospheric icing may have significant effects not only on safety of aircraft in air, but also on performance of wind turbine and power networks on ground. Thus, ice protection measure should be developed to protect these systems from icing hazards. A very efficient method is the electro-thermal de-icing based on a process by which ice accretion is melted and blown away through aerodynamic forces. In this computational study, a state-of-the-art icing code, FENSAP-ICE, was used for the analysis of electro thermal de-icing system. Computational results including detailed conjugate heat transfer analysis were then validated with experimental data. Further, the computational model was applied to the DU21 airfoil section of NREL 5MW wind turbine with calculated heater parameters.

A Study to Analyze Service Life of Expressway Pavement according to Traffic Volumes and De-icing Chemicals (교통량 및 제설제 사용량에 따른 고속도로 포장의 공용수명 분석)

  • Kim, Chan-Woo;An, Soo-Han;Park, Hee-Young;Lee, Jung-Hun;Jung, Chul-Ki
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • PURPOSES : The purpose of this study is to analyze the service life of expressway pavement based on both traffic volumes and use of deicing chemicals. METHODS : A database was built using expressway rehabilitation history information from over the last decade. In order to estimate the service life of expressway pavement, various analysis methods were considered, and a decision was made to perform analysis using a method based on an accumulated rehabilitation ratio. The service life of expressway pavement was then analyzed by classifying the scale of traffic volume and extent of de-icing chemicals used. RESULTS : The service life of PMA and SMA ranged from 7.8 to 10.6 years and from 9.9 to 12.0 years, respectively. The service life of JCP ranged from 16.0 to 22.2 years, and the service life of CRCP was 33.5 years on average. Results of assessing service life according to traffic volumes and de-icing chemicals showed that the lower the traffic volumes were, the greater the service life of PMA and JCP, and the less that de-icing chemicals were applied, the greater the service life of JCP. CONCLUSIONS : The dependence of expressway pavement service life on traffic volumes and de-icing chemicals makes it possible to apply LCCA for regional maintenance plans and cost-effective selection of expressway pavement type.

Evaluation on De-Icing Salts Laden Environment of Road in Seoul (제설제에 노출된 서울시내 도로 시설물의 열화 환경 분석)

  • Yoon, In-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • De -icing salts have been used commonly in areas where snow or ice is a seasonal safety hazard for roadway, however, the salts is one of main causes on serious deterioration of road infrastructures in crowded urban city like Seoul. In order to establish maintenance strategy of road infrastructures under de-icing salts laden environment, it is necessary to examine environmental characteristics and its response to the existing facilities. The purpose of this study is to evaluate the deterioration environment of road infrastructures. Additional purpose is to develop a design model and details for durability design of infrastructures under de-icing salts laden environment, considering mainly a build-up rate of surface chlorides. Concentration of external chloride solution and surface chloride content were calculated at the level of average de-icing salts for 5 years, ratio of auxiliary road of 17.5 to 30%, and effective exposure area to snow 50 to 80%. The chloride build-up rate was 0.073 ~ 0.077% / year and the maximum surface chloride content was calculated to be 2.2 ~ 2.31% by concrete wt. This study is expected to be used for establishing integrated strategy of road infrastructures, such as predicting chloride profiles or degree of chemical corrosion to exposure concrete.

Temperature Analysis of Overhead Contact line Using De-icing System (해빙 시스템을 이용한 전차선 온도 특성에 관한 연구)

  • Park, Young;Kwon, Sam-Young;Jung, Ho-Sung;Park, Hyun-Jun;Cho, Young-Hyeon;Kim, Joo-Rak;Ahn, Byeong-Lib;Won, Woo-Sik;Lee, Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.601-602
    • /
    • 2005
  • In the cold and temperate regions of Korea the icing and ice coats on 25 kV overhead contact wire during winter is a very serious problem. This generates shocks at the mechanical interface of the collecting strips of the pantograph and the contact wire and extra electrical resistance, which may affect quality of current collection at the contact wire / collecting strips of pantograph interface. De-icing operations should be performed just before train operation to avoid the formation of another ice layer. This paper presents temperature analysis of the de-icing system which could be applied to the overhead contact wire of railways.

  • PDF

De-icing of the hydrophobic treated nanoporous anodic aluminum oxide layer (소수성 처리된 나노다공성 알루미늄 양극산화피막의 제빙)

  • Shin, Yeji;Kim, Jinhui;Shin, Dongmin;Moon, Hyung-Seok;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.222-229
    • /
    • 2021
  • Icing causes various serious problems, where water vapor or water droplets adhere at cold conditions. Therefore, understanding of ice adhesion on solid surface and technology to reduce de-icing force are essential for surface finishing of metallic materials used in extreme environments and aircrafts. In this study, we controlled wettability of aluminum alloy using anodic oxidation, hydrophobic coating and lubricant-impregnation. In addition, surface porosity of anodized oxide layer was controlled to realize superhydrophilicity and superhydrophobicity. Then, de-icing force on these surfaces with a wide range of wettability and mobility of water was measured. The results show that the enhanced wettability of hydrophilic surface causes strong adhesion of ice. The hydrophobic coating on the nanoporous anodic oxide layer reduces the adhesion of ice, but the volume expansion of water during the freezing diminishes the effect. The lubricant-impregnated surface shows an extremely low adhesion of ice, since the lubricant inhibits the direct contact between ice and solid surface.

Ice Melting Capacity Evaluation of Applicable Materials of De-icing Fluid for High Speed Railway Rolling Stock (고속철도차량용 제빙액으로의 적용가능물질에 대한 융빙성능 평가)

  • Park, Gyoung-Won;Lee, Jun-Ku;Lee, Hong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.384-388
    • /
    • 2019
  • In winter season, the snow and ice accretion on the bottom of the high speed railway rolling stock and boogie part has fallen at a high speed from the ballast section (gravel section for the transmission of the rolling stock load received by sleepers and fixing sleepers), causing the gravel to be scattered, thereby damaging the railway rolling stock structures and facilities. In order to solve these problems, the gravel scattering prevention net, manual de-icing, and movable hot air machine were used, but their efficiency was low. For the more efficient de-icing than ever before, an optimum material for de-icing fluid for high speed railway rolling stock was developed by evaluating the ice melting capacity, kinematic viscosity, evaporation of the material used as a chemical de-icing fluid. Four kinds of organic acid salts (sodium formate, sodium acetate, potassium formate and potassium acetate) and two different alcohols (propylene glycol, glycerol) were used as evaluation materials. Potassium formate, potassium acetate, and propylene glycol had similar ice melting capacities in the indoor test, but the propylene glycol showed the best ice melting capacity in spraying the system simulation test. This is because the kinematic viscosity of propylene glycol was 2.989029 St, which is higher than those of other materials therefore, it could stay longer on the ice and de-icing. In addition, potassium formate and potassium acetate were difficult to be used since the crystals precipitated and adversely affected the appearance of the rolling stock. The propylene glycol is the most optimum as an de-icing fluid for the high speed railway rolling stock.

An Experimental Study on the Deterioration of Concrete Due to De-icing Salts (융빙제에 의한 콘크리트의 내구성능 저하에 관한 실험적 연구)

  • 고경택;류금성;이종석;김도겸;김성욱;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.973-978
    • /
    • 2001
  • In clod weather regions, a strong seasonal wind brings sea salts to the land. In addition to it, recently, the spreading amount of de-icing salts has increased numerously for the purpose of removing snow and ice. Thus the salts environment around concrete structures becomes so severe that various damages of concrete due to applied salts will be brought up. It is briskly carried out study on effects of do-icing salts on concrete in America, Japan, European countries. However, there are not test method for the deterioration of concrete subjected to both freezing-thawing and chloride attack in Korea. In this study, we conduct on test for the compound deterioration subjected to both freezing-thawing and chloride attack, in order to investigate effects of de-icing salts on the deterioration of concrete.

  • PDF

Analysis of Temperature on Overhead Contact Line Using De-icing System (전차선 해빙시스템의 온도 상승효과)

  • Park Young;Kwon Samyoung;Jung Hosung;Cho Younghyun;Park Hyunjune;Lee Kiwon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.724-729
    • /
    • 2005
  • Winter weather condition can cause icing and ice coats on 25 kV overhead contact wire. This generates shocks at the mechanical interface of the collecting strips of the pantograph and the contact wire and extra electrical resistance, which may affect quality of current collection at the contact wire / collecting strips of pantograph interface. De-icing operations should he performed just before train operation to avoid the formation of another ice layer. Thus, the work in this paper is investigation and analysis of de-icing system which could be applied to the electric car line of railways.

  • PDF

A Study on the Temperature Feature of Electric Car Line by the Climatic Change for the De-icing System (해빙시스템을 위한 기후변화에 따른 전차선 온도특성에 관한 연구)

  • Jung, Myung-Sub;Kim, Yong;Lee, Byung-Song;Kwon, Sam-Young;Jung, Ho-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.305-307
    • /
    • 2005
  • In the cold and temperate regions of Korea the icing and ice coats on 25[kV] electric car line during winter is a very serious problem. This generates shocks at the mechanical interface of the collecting strips of the pantograph and the contact wire and extra electrical resistance, which may affect quality of current collection at the contact wire / collecting strips of pantograph interface. De-icing operations should be performed just before train operation to avoid the formation of another ice layer. This paper presents temperature analysis of the de-icing system which could be applied to the electric car line of railways.

  • PDF

Development of a Low-power Walk-way for Anti-Icing (결빙 방지를 위한 저전력 갑판이동로 개발)

  • Bae, Sang-Eun;Cho, Su-gil;Lee, Woon-Seek
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.353-364
    • /
    • 2019
  • The walk-way means a passage installed on the deck of a ship so that a person can safely move under any circumstances. So, the walk-way has to maintain a temperature of $5^{\circ}C$ or more for anti/de-icing even at an ambient temperature of $-62^{\circ}C$, a temperature in polar region. At present, the walk-way with heating cable is used, but the anti/de-icing effect is insufficient due to low heat transfer efficiency. Also, it has a construction problem due to heavy weight. In this study, an walk-way with a CNT surface heating element is proposed for the high anti/de-icing effect and the heating value per unit volume. The international standard survey, conceptual design, and simulation for the structural safety and the heat transfer are performed for the development of the proposed walk-way. To enhance the performance, the case studies based on the simulation analysis are conducted. Finally, the final prototype, applying the optimum material and thickness (3.2t of SS400) based on the case study results, is fabricated and experimented.