• Title/Summary/Keyword: Dc-distribution system

Search Result 319, Processing Time 0.022 seconds

A Study on Detection of High Impedance Fault in Low Voltage DC Distribution System using Filter based on Mathematical Morphology (수학적 형태학 기반의 필터를 이용한 저압직류 배전계통의 고저항 지락고장 검출에 관한 연구)

  • Oh, Yun-Sik;Noh, Chul-Ho;Kim, Doo-Ung;Gwon, Gi-Hyeon;Han, Joon;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.89-95
    • /
    • 2015
  • As a solution of improving the energy efficiency in power system, Low Voltage DC (LVDC) distribution systems different from conventional ones have been constantly researched. As in conventional AC distribution system, LVDC distribution system can suffer from High Impedance Fault (HIF) which may cause a failure of protective relay due to relatively low change in magnitude of fault current. In order to solve the problem, a scheme for detecting HIFs is presented in this paper. Closing Opening Difference Operation (CODO) based on Mathematical Morphology (MM), one of the MM-based filters, is utilized to make fault signals discriminable. To verify performance of the scheme, a simple LVDC distribution system is modeled by using ElectroMagnetic Transient Program (EMTP) software. Computer simulations according to various conditions are performed and comparison studies with a scheme using Wavelet Transform (WT) in an aspect of simulation time are also conducted.

A Stable Black-Start Strategy for a Stand-Alone DC Micro-Grid

  • Cha, Jae-Hun;Han, Yoon-Tak;Park, Kyung-Won;Oh, Jin-Hong;Choi, Tae-Seong;Ko, Jae-Hun;MAHIRANE, Philemon;An, Jae-Yun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.30-37
    • /
    • 2018
  • Unlike an AC system, a DC system does not cause problems with synchronization, stability, reactive power, system losses, and cost. However, more research is still required for the application of DC Systems. This paper proposes a stable black-start strategy for a stand-alone DC micro-grid, which consists of an energy storage system, photovoltaic generator, wind-turbine generator, diesel generator, and DC loads. The proposed method is very important for avoiding inrush current and transient overvoltage in the power system equipment during restoration after a blackout. PSCAD/EMTDC software was used to simulate, analyze, and verify the method, which was found to be stable and applicable for a stand-alone DC micro-grid.

The Development of Equalizing Spacer for Minimization of Voltage Drop according to DC Feeder Extension (직류 급전선 증설에 따른 전압강하 최소화를 위한 균압 스페이서 개발)

  • Lee, Jae-Bong;Seo, Il-Kwon;Na, Youn-Il;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.1013-1018
    • /
    • 2014
  • This paper described the development of equalizing spacer for minimization of voltage drop according to DC feeder extension. Power consumption is increased as shorter interval of train driving time and transportation capacity increase in urban subway. Therefore we investigated voltage drop of catenary at a point in case of traction driving of a train in parallel to the DC power supply system. Based on it's result, equalizing spacer is designed and fabrication to minimize the voltage drop in accordance with the power supply line arranged in three rows, and then its performance was confirmed that the stress distribution of main body and the distributed load are satisfied through the body structure modeling.

Brightness Controllable LVDC LED Lightings Based on IoT (밝기 제어가 가능한 IoT기반 LVDC LED조명 시스템)

  • Lee, Yoen-Seok;Park, Gun-Pil;Choi, Sang-Ui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.158-164
    • /
    • 2016
  • That's the reason why LED lighting has to employ AC power inlet. However, LED is a kind of diode, semiconductor, it's driven by DC power. With whis reason all of LED lighting should have AC/DC converter in its systems. This converter causes energy loss, it's the target for lesson the energy loss. To reduce this energy loss, DC power distribution structure can be used. LED lighting system using LVDC is a kind of DC power distribution structure, but LVDC has severe voltage drop which makes non-uniform brightness in lighting system. In this paper, we suggest a novel structure for the uniform brightness in LVDC LED lighting system using IoT based network system. The constructed test-bed system of suggested structure shows this structure can con control the brightness with uniformity.

Power Flow Control of a Multi-bus/Three-feeder Distribution System Using Generalized Unified Power Quality Conditioner

  • Mohammed, B.S.;Ibrahim, R.;Perumal, N.;Rao, K.S. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.8-17
    • /
    • 2015
  • This paper analyses the power flow of a three-feeder/multi-bus distribution system by a custom Generalized Power Quality Conditioner (GUPQC). The GUPQC has been realized by three voltage source converters (VSCs) coupled back-to-back through a common DC-link capacitor on the DC-side. One feeder was controlled by the shunt compensator, whereas each of the other two feeders was controlled by the proposed novel series compensator. The GUPQC has the capability to simultaneously compensate voltage and current quality problems of a multi-bus/three-feeder distribution system. Besides that, the power can be transferred from one feeder to other feeders to compensate for poor power quality problems. Extensive simulation studies were carried out by using MATLAB/SIMULINK software to establish the ability of the GUPQC to improve power quality of the distribution systems under distorted supply voltage conditions.

Performance Analysis of UPQC(Unified Power Quality Conditioner) with Compensation Capability for Voltage Interruption (순간정전에 대한 보상능력을 갖는 UPQC(Unified Power Quality Conditioner)의 성능해석)

  • 김희중;배병열;한병문;설승기;조보형
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.5
    • /
    • pp.279-286
    • /
    • 2003
  • A new UPQC(unified power quality conditioner), which consists of series inverter, shunt inverter, dc/dc converter, and energy storage, is proposed. The proposing UPQC can compensate reactive power, harmonics, voltage sag and swell, voltage unbalance, and voltage interruption. The control strategy for the proposing UPWQC was derived using the instantaneous power method. The performance of proposing system was analyzed by means of the EMTDC/PSCAD simulation and the experimental work with the hardware prototype. The proposing UPQC has the ultimate capability of improving power quality at the point of installation on power distribution systems or industrial power systems and can be utilized for the custom power device in the future distribution system.

A Study on Excitation System for Synchronous Generator Using Two State Three Phase PWM AC/DC Converter (2단 3상 PWM AC/DC 컨버터를 이용한 동기발전기 여자제어시스템)

  • Lee, Sang-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.96-106
    • /
    • 2007
  • The terminal voltage of a synchronous generator is maintained by the field current control of excitation system. Generally AC/DC converter which is component of AVR(Automatic Voltage Regulator) system for excitation current control is connected to diode rectifier and DC/DC converter system. In the case of diode rectifier system of phase controlled converter as AC/DC converter have low power factor and harmonics of lower order in the line current. In this paper, two stage three phase PWM AC/DC converter is studied to solve these problems. The characteristics of a proposed converter reduces the harmonics and reactive power of the distribution line and has fast dynamic response in transient period using boost converter and current control mode buck converts. The proposed method is verified by the computer simulation and experimental results in prototype generation system.

Space Vector PWM Method for Leakage Current Reduction and NP Current Control in 3-phase 3-level Converter used in Bipolar DC Distribution System (양극성 DC 배전용 3상 3-레벨 컨버터의 누설전류 저감과 NP 전류 제어를 위한 공간벡터 PWM 방법)

  • Lee, Eun-Chul;Choi, Nam-Sup;Kim, Hee-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.336-344
    • /
    • 2018
  • This study proposes a new PWM method for leakage current reduction and neutral point (NP) current control in three-phase three-level converter employed in bipolar DC distribution systems. The proposed PWM method uses medium vectors only when there is no need to control the NP current. Thus, common mode voltages are held constant to realize zero leakage current. Some space vectors that produce low-frequency common mode voltages are employed to minimize leakage currents when the average NP current needs to be a positive or negative value. The proposed space vector PWM is implemented based on barycentric coordinate. The validity of the proposed PWM method is verified by simulations and experiments.

A Quasi Z-Source AC-AC Converter with a Low DC Voltage Distribution Capability Operating as a Power Electronic Transformer (전력전자 변압기로 동작하는 저전압 직류배전 기능을 갖는 Quasi Z-소스 AC-AC 컨버터)

  • Yoo, Dae-Hyun;Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.358-366
    • /
    • 2014
  • This paper proposes a quasi Z-source AC-AC converter with the low DC voltage distribution capability operating as a power electronic transformer. The proposed system has configuration that the input terminals of two quasi Z-source AC-AC converters are connected in parallel, also their output terminal are connected in series. Simple control method of duty ratio was proposed for the in phase buck-boost AC voltage mode and the DC output voltage control. DSP based experiment and PSIM simulation were performed. As a result, the PSIM simulation results were same with the measured results. By controlling the duty ratio under the condition of 100 [${\Omega}$] load, quasi Z-source AC-AC converter could buck and boost the AC output voltage in phase with the AC input voltage, and the same time, the constant DC voltage could be output without affecting the AC output characteristics. And, the DC output voltage 48[V] was constantly controlled in dynamic state in case while the load is suddenly changed ($50[\Omega]{\rightarrow}100[\Omega]$). From the above result, we could know that the quasi Z-source AC-AC converter can act as a power electronic transformer with a low DC voltage distribution capability.

Operating Characteristics of Arc-induction Type DC Circuit Breaker (아크유도형 DC 차단기의 동작 특성)

  • Park, Sang-Yong;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.981-986
    • /
    • 2018
  • AC(alternating current) CB(circuit breaker) at the fault occurred in the existing AC distribution system is limiting the fault current through zero cross-point. However, DC(direct current) CB does not have zero cross-point. Therefore, arc occurred by on-off operation of DC CB is very huge. Nowadays, many research team are studying the way to decrease breaking time, which is one of the essential conditions in DC CB. We suggested novel arc-induction type DC CB in this paper. The proposed arc-induction type DC CB is composed of the mechanical Arc ring and DC CB. We confirmed the operation of arc-induction type DC CB through the HFSS(High Frequency Structure Simulator) 3D simulation program and performed the experiment for operation characteristics. Results showed that arcing time of the arc-induction type DC CB by using induction ring was faster than existing mechanical DC CB. On the transient system, we confirmed stable operation characteristics of the arc-induction type DC CB through the simulation and experimental results. We expect that the proposed arc-induction type DC CB technology is will go to stay ahead of the existing DC CB technology.