• Title/Summary/Keyword: Daylight Control System

Search Result 60, Processing Time 0.034 seconds

Daylighting Performance of Office Space Applied with Electrochromic Façade System (전기변색 외피시스템 적용 업무공간의 채광 성능 분석)

  • Kim, Jae-Hyang;Han, Seung-Hoon
    • Land and Housing Review
    • /
    • v.13 no.1
    • /
    • pp.131-140
    • /
    • 2022
  • A smart window is a new building material that can realize energy savings in a building. Smart windows can freely adjust Visible Light Transmittance (VLT) and solar gain coefficient (g-value) according to the situation. Smart windows include such technologies as Electrochromic (EC), Suspended Particle Device (SPD), and Polymer Dispersed Liquid Crystal (PDLC). Recent research on building energy savings through the VLT and g-value control functions of smart windows is being actively conducted and meaningful results are being drawn. However, since most of the research is focused on energy savings, research on the indoor environment is somewhat lacking. A building is a space where people live and the comfort of life should be prioritized before energy savings. Therefore, in this study, analysis on the daylight performance of an office space was carried out. Through green building standards such as LEED, BREEAM, CASBEE, and G-SEED, the daylight performance was reviewed according to VLT value changes of the smart window. In addition, a study was conducted on the VLT range of the electrochromic façade that can maintain a comfortable indoor environment. The smart window used electrochromic control with a wide range of VLT. The study showed that the minimum VLT of a smart window that can satisfy G-SEED is 25% or more. In addition, it was found that the VLT change of the electrochromic smart window did not significantly affect the uniformity of the room. When the LEED standard was applied, the minimum VLT value of the electrochromic smart window that must be maintained according to each orientation of the building was derived.

Energy Efficient Lighting Control Facilities Related to Daylight Levels (주광(晝光) 대등형 가변조명(可變照明) 제어설비의 적용 및 통합성능)

  • Kim, Jeong-Tai;Kim, Gon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.8-15
    • /
    • 2006
  • To reduce costs and address other practical concern related to architectural lighting, we have been involved in various aspects of advanced daylighting design and control. If we look toward future building trends, we see that the advanced has already successfully deployed such complex lighting control systems. This paper takes a broad view of what advanced manufacturers have done to develop energy efficient lighting control technologies such as sensors, lumen maintenance, time of day scheduling, peak demand reduction and so forth. First of all strategies, daylighting controls would also need to be commissioned to respond to the specific daylighting signature of the zone. To translate the daylight in term of the amount of energy savings, an electric lighting system is designed and automatic on-off control system integrated with the contribution of daylighting has been applied to the operating of the artificial lighting. The lighting analysis program, Lumen-Micro predicts the optimal layout of conventional fluorescent and incandescent lighting fixtures to meet the designed lighting level and calculates unit power density, which translates the demanded amount of lighting energy.

Full-scale Mock-up Measurement of a Double Glazed Window System Equipped with Sunlight Controls (광기능성 창호시스템의 동절기 채광특성에 관한 목업연구)

  • Kim, Gon
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.35-42
    • /
    • 2008
  • Besides genuine skin and clothes, it is called that building is third skin for us. That means the skin of buildings is the most important factor for our man-made environment. The issues in designing the building envelope include the insulation, infiltration, ventilation and bridging in windows. Getting light into the space safely and providing views to outdoor, additionally, are key things with the building envelope design. A deep-rooted preference for full view is still alive with large area of glass. Balcony expansion is legalized in apartment houses, which causes lots of environmental problems. Without balcony space, the adjacent space to unshaded window is exposed to the direct sun. A window can have many layers and the inner space can be utilized with an automatic blind system. Recently, the refurbished version of a double-glazed window system has been developed for the purpose of minimizing energy loss occurred around windows. For the better daylight control with equipped blind system, a set of adjustment technique of blind slats was tested in a mock-up building and recommended the detail operation. Not surprisingly, the optimized blind system can be oriented to enhance the uniformity in light distribution and direct glare from the sky as well..

Electrical Design of a Solar Array for LEO Satellites

  • Park, Heesung;Cha, Hanju
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.401-408
    • /
    • 2016
  • During daylight, the solar array of low earth orbit satellites harvests electrical power to operate satellites. The power conversion of the solar array is carried out by control of the operation point using the solar array regulator when the solar array faces the sunlight. Thus, the design of the solar array should comply with not only the power requirement of satellite system but also the input voltage requirement of the solar array regulator. In this paper, the design requirements of the solar array for low earth orbit satellites are defined, and the means of satisfying these requirements are described. In addition, the architecture of a multi-distributed interface is suggested to maximize the power harvested from a solar array having high temperature deviation between each panel. The power analysis in this paper shows the optimal number of multi-distributed interfaces with a converter.

A Study on the Implementation of BPSK Demodulator with Remodulation Method for Power Line Carrier Communication (전력선 통신용 재변조방식의 BPSK복조기 실현에 관한연구)

  • 오상기;나채동;진달복
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.4
    • /
    • pp.38-45
    • /
    • 1994
  • It is very imprtant and necessary to predict luminous enviroment in an interior space. This paper has de scribed about energy saving and evaluated interior visual environment in a office building having on/off turning control lighting system utilizing daylight. In order to predict the interior varior illumination distribution, the scale model w a m~a de and examined under various conditions, such ad difference of window glass, and color pattern of wall, floor, and also ceiling lighting system type. Ths paper suggests that basic fundamental data of lighting design ~rformancein the concept and schematic stages of design.

  • PDF

Survey the Occurrences and Establishment of Environment-friendly Control System of Ricania shanthungensis in Jeonnam Province (전남지역 갈색날개매미충 발생현황과 친환경 방제)

  • Choi, Duck-Soo;Ma, Kyung-Cheol;Kim, Hyo-Jeong;Lee, Jin-Hee;Oh, Sang-A;Kim, Seon-Gon
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.3
    • /
    • pp.439-452
    • /
    • 2018
  • This study was carried out to establish of environment-friendly control system and to survey the occurrence status of Ricania shanthungensis in Jeonnam province from 2016 to 2017. R. shanthungensis occurred at 1,344 ha in 61 towns of 15 cities in Gwangju and Jeonnam province. At four sites in the stationary area, the densities of eggmass and pupae were lower in 2017 than in 2016, the hatching rate decreased, and the first hatching time, emergence of adults, and the start of spawning tended to be slower. Telenomus sp., an egg parasitoid of R. shanthungensis, was found in most areas. Sunchon had the highest rate of 46.1%, followed by Muan 40.6, Goksung 29.2, Gurye 25.8, and Gwangju 17, respectively. The optimum spraying time for the control of R. shanthungensis was early March. The spraying material and the dilution multiples are 10 times of the machine oil at environmental friendly cultivation and 500 times of the chlorpriphosphate wp. at normal cultivation. When sprayed these materials, 95% of egg prohibited to hatch. There was more than 80% of the insecticidal effects on the organic materials of the machine oil emulsion, the Sophora root extrect + microbial extract agent, and the castor emulsion. For adults, Sophora root extrect + microbial extract, neem extract, and machine oil were better. Four kinds of chemical pesticides such as dinotefuran wp were effective for nymph and adult control. We have developed an adult catching device using the most preferred daylight color and behavioral habits of R. shanthungensis. The capture device consisted of two daylight compact lamps (30W and 20W), a yellow plate, and a catcher using water, and caught about 700 individuals a day. Based on the above results, we have established a system for controlling and life cycle of R. shanthungensis in Jeonnam province.

Comparative Analysis on Configurations and Characteristics of IEA's Advanced Daylighting Systems (IEA 첨단채광시스템의 형상 및 특성에 관한 비교분석)

  • Kim, Jeong-Tai;Chung, Yu-Gun;Ahn, Hyun-Tai;Ahn, Hyug-Keun
    • KIEAE Journal
    • /
    • v.3 no.1
    • /
    • pp.45-56
    • /
    • 2003
  • New and innovative technologies for utilizing daylight in buildings have been developed for saving energies and improving visual environments. This study describes the most up-to date information available about the application and evaluation of advanced daylighting systems to enhance daylighting in non-residential buildings from IEA's Task 21. IEA's Task 21 consists on 4 subtasks such as "Performance Evaluation of Daylighting Systems(subtask A)", "Daylighting Responsive Controls(subtask B)", "Daylighting Design Tools(subtask C)" and "Case Studies(subtask D)". For the study, the configurations and characteristics of IEA's advanced daylighting systems are comparatively analyzed. As results, innovative daylighting systems are designed to redirect sunlight or skylight to areas which it is required without glare. These systems use optical devices that initiate reflection or refraction of sunlight and skylight. And they can be designed to actively track the sun or passively control the direction of sunlight and skylight. The comprehensive overview of innovative daylighting systems presented in this study helps designer to understand the advantages of daylighting in building and choose a suitable system for building in the earliest stage of the design process.

A Study on HILS for Performance Analysis of Airborne EOTS for Aircraft (항공기용 EOTS 성능분석을 위한 HILS시스템 구축에 관한 연구)

  • Chun, Seungwoo;Baek, Woonhyuk;La, Jongpil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.55-64
    • /
    • 2013
  • In this paper, the HILS (Hardware In-the-Loop Simulation) system to analyze and to verify the performance of the targeting pod is addressed. The main functions of the targeting pod is acquiring and tracking targets to guide a LGB (Laser Guided Bomb) to the targets. For the analysis of targeting pod, the real time simulate images generation of IR and daylight cameras, sever control technology, and the analysis of laser transfer characteristics are necessary. For the real time image generation and the laser transfer characteristics analysis, off-the-shelf SDK(Software Development Kit) OKTAL-SE is used. For the servo controller, well-proven mechanism in the previous program is applied to increase servo control accuracy. To analyze the performance of a targeting pod in a realistic environment, 1553B, ARINK818 interface and etc. which are actually implemented in real combat aircrafts are applied in the system. By using the developed HILS system, the performance of currently operating targeting pods in real combat aircrafts can be analyzed and predicted. Additionally, the relationship between overall system performance and each module performance can be analyzed, the currently developed HILS system is expected to be a very useful tool to generate system development requirements of targeting pods and to reduce any possible future development risks.

A Study on Analysis for Energy Demand of the Heating, Cooling and Lighting in Office Building with Transparent Thin-film a-Si BIPV Window (투광형 박막 BIPV 창호 적용에 따른 냉난방 및 조명 부하 저감에 관한 연구)

  • Yoon, Jong-Ho;An, Young-Sub;Park, Jang-Woo;Kim, Bit-Na
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.91-96
    • /
    • 2013
  • The purpose of this study was to analyze the annual energy demand including heating, cooling and lighting according to kind of windows with transparent thin-film a-Si Building Integrated Photovoltaic(a-Si BIPV) for office building. The analysis results of the annual energy demand indicated that the a-si BIPV window was reduced by 8.4% than the clear gazing window. The base model A was combinate with a-Si BIPV window area of 67% and clear window area of 33% among the total exterior area. The model B is to be applied with low-e clear glass instead of clear glass of the base model A. The model B was reduced to annual energy demand of 1% more than the model A. Therefore, By using a-si BIPV solar module, the cooling energy demand can be reduced by 53%(3.4MWh) and the heating energy demand can be increase by 58%(2.4MWh) than clear glazing window in office building. Also, Model C applied to the high efficient lighting device to the model B was reduced to annual energy demand of 14.4% more than the Model D applied to the high efficient lighting device to the model A. The Model E applied with daylight dimming control system to the Model C was reduced to annual energy demand of 5.9% more than Model C.

Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation (반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교)

  • Choi, Eun-Young;Jeong, Young-Ae;An, Seung-Hyun;Jang, Dong-Cheol;Kim, Dae-Hyun;Lee, Dong-Soo;Kwon, Jin-Kyung;Woo, Young-Hoe
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.401-409
    • /
    • 2021
  • This study aimed to estimate the photosynthetic capacity of tomato plants grown in a semi-closed greenhouse using temperature response models of plant photosynthesis by calculating the ribulose 1,5-bisphosphate carboxylase/oxygenase maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), thermal breakdown (high-temperature inhibition), and leaf respiration to predict the optimal conditions of the CO2-controlled greenhouse, for maximizing the photosynthetic rate. Gas exchange measurements for the A-Ci curve response to CO2 level with different light intensities {PAR (Photosynthetically Active Radiation) 200µmol·m-2·s-1 to 1500µmol·m-2·s-1} and leaf temperatures (20℃ to 35℃) were conducted with a portable infrared gas analyzer system. Arrhenius function, net CO2 assimilation (An), thermal breakdown, and daylight leaf respiration (Rd) were also calculated using the modeling equation. Estimated Jmax, An, Arrhenius function value, and thermal breakdown decreased in response to increased leaf temperature (> 30℃), and the optimum leaf temperature for the estimated Jmax was 30℃. The CO2 saturation point of the fifth leaf from the apical region was reached at 600ppm for 200 and 400µmol·m-2·s-1 of PAR, at 800ppm for 600 and 800µmol·m-2·s-1 of PAR, at 1000ppm for 1000µmol of PAR, and at 1500ppm for 1200 and 1500µmol·m-2·s-1 of PAR levels. The results suggest that the optimal conditions of CO2 concentration can be determined, using the photosynthetic model equation, to improve the photosynthetic rates of fruit vegetables grown in greenhouses.