• Title/Summary/Keyword: Dataset construction

Search Result 190, Processing Time 0.03 seconds

Building-up and Feasibility Study of Image Dataset of Field Construction Equipments for AI Training (인공지능 학습용 토공 건설장비 영상 데이터셋 구축 및 타당성 검토)

  • Na, Jong Ho;Shin, Hyu Soun;Lee, Jae Kang;Yun, Il Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.99-107
    • /
    • 2023
  • Recently, the rate of death and safety accidents at construction sites is the highest among all kinds of industries. In order to apply artificial intelligence technology to construction sites, it is essential to secure a dataset which can be used as a basic training data. In this paper, a number of image data were collected through actual construction site, for which major construction equipment objects mainly operated in civil engineering sites were defined. The optimal training dataset construction was completed by annotation process of about 90,000 image dataset. Reliability of the dataset was verified with the mAP of over 90 % in use of YOLO, a representative model in the field of object detection. The construction equipment training dataset built in this study has been released which is currently available on the public data portal of the Ministry of Public Administration and Security. This dataset is expected to be freely used for any application of object detection technology on construction sites especially in the field of construction safety in the future.

Recommendations for the Construction of a Quslity-Controlled Stress Measurement Dataset (품질이 관리된 스트레스 측정용 테이터셋 구축을 위한 제언)

  • Tai Hoon KIM;In Seop NA
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.44-51
    • /
    • 2024
  • The construction of a stress measurement detaset plays a curcial role in various modern applications. In particular, for the efficient training of artificial intelligence models for stress measurement, it is essential to compare various biases and construct a quality-controlled dataset. In this paper, we propose the construction of a stress measurement dataset with quality management through the comparison of various biases. To achieve this, we introduce strss definitions and measurement tools, the process of building an artificial intelligence stress dataset, strategies to overcome biases for quality improvement, and considerations for stress data collection. Specifically, to manage dataset quality, we discuss various biases such as selection bias, measurement bias, causal bias, confirmation bias, and artificial intelligence bias that may arise during stress data collection. Through this paper, we aim to systematically understand considerations for stress data collection and various biases that may occur during the construction of a stress dataset, contributing to the construction of a dataset with guaranteed quality by overcoming these biases.

A Study on Construction Method of AI based Situation Analysis Dataset for Battlefield Awareness

  • Yukyung Shin;Soyeon Jin;Jongchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.37-53
    • /
    • 2023
  • The AI based intelligent command and control system can automatically analyzes the properties of intricate battlefield information and tactical data. In addition, commanders can receive situation analysis results and battlefield awareness through the system to support decision-making. It is necessary to build a battlefield situation analysis dataset similar to the actual battlefield situation for learning AI in order to provide decision-making support to commanders. In this paper, we explain the next step of the dataset construction method of the existing previous research, 'A Virtual Battlefield Situation Dataset Generation for Battlefield Analysis based on Artificial Intelligence'. We proposed a method to build the dataset required for the final battlefield situation analysis results to support the commander's decision-making and recognize the future battlefield. We developed 'Dataset Generator SW', a software tool to build a learning dataset for battlefield situation analysis, and used the SW tool to perform data labeling. The constructed dataset was input into the Siamese Network model. Then, the output results were inferred to verify the dataset construction method using a post-processing ranking algorithm.

A Development of Façade Dataset Construction Technology Using Deep Learning-based Automatic Image Labeling (딥러닝 기반 이미지 자동 레이블링을 활용한 건축물 파사드 데이터세트 구축 기술 개발)

  • Gu, Hyeong-Mo;Seo, Ji-Hyo;Choo, Seung-Yeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.12
    • /
    • pp.43-53
    • /
    • 2019
  • The construction industry has made great strides in the past decades by utilizing computer programs including CAD. However, compared to other manufacturing sectors, labor productivity is low due to the high proportion of workers' knowledge-based task in addition to simple repetitive task. Therefore, the knowledge-based task efficiency of workers should be improved by recognizing the visual information of computers. A computer needs a lot of training data, such as the ImageNet project, to recognize visual information. This study, aim at proposing building facade datasets that is efficiently constructed by quickly collecting building facade data through portal site road view and automatically labeling using deep learning as part of construction of image dataset for visual recognition construction by the computer. As a method proposed in this study, we constructed a dataset for a part of Dongseong-ro, Daegu Metropolitan City and analyzed the utility and reliability of the dataset. Through this, it was confirmed that the computer could extract the significant facade information of the portal site road view by recognizing the visual information of the building facade image. Additionally, In contribution to verifying the feasibility of building construction image datasets. this study suggests the possibility of securing quantitative and qualitative facade design knowledge by extracting the facade design knowledge from any facade all over the world.

Construction and Effectiveness Evaluation of Multi Camera Dataset Specialized for Autonomous Driving in Domestic Road Environment (국내 도로 환경에 특화된 자율주행을 위한 멀티카메라 데이터 셋 구축 및 유효성 검증)

  • Lee, Jin-Hee;Lee, Jae-Keun;Park, Jaehyeong;Kim, Je-Seok;Kwon, Soon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.273-280
    • /
    • 2022
  • Along with the advancement of deep learning technology, securing high-quality dataset for verification of developed technology is emerging as an important issue, and developing robust deep learning models to the domestic road environment is focused by many research groups. Especially, unlike expressways and automobile-only roads, in the complex city driving environment, various dynamic objects such as motorbikes, electric kickboards, large buses/truck, freight cars, pedestrians, and traffic lights are mixed in city road. In this paper, we built our dataset through multi camera-based processing (collection, refinement, and annotation) including the various objects in the city road and estimated quality and validity of our dataset by using YOLO-based model in object detection. Then, quantitative evaluation of our dataset is performed by comparing with the public dataset and qualitative evaluation of it is performed by comparing with experiment results using open platform. We generated our 2D dataset based on annotation rules of KITTI/COCO dataset, and compared the performance with the public dataset using the evaluation rules of KITTI/COCO dataset. As a result of comparison with public dataset, our dataset shows about 3 to 53% higher performance and thus the effectiveness of our dataset was validated.

Efficient Large Dataset Construction using Image Smoothing and Image Size Reduction

  • Jaemin HWANG;Sac LEE;Hyunwoo LEE;Seyun PARK;Jiyoung LIM
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2023
  • With the continuous growth in the amount of data collected and analyzed, deep learning has become increasingly popular for extracting meaningful insights from various fields. However, hardware limitations pose a challenge for achieving meaningful results with limited data. To address this challenge, this paper proposes an algorithm that leverages the characteristics of convolutional neural networks (CNNs) to reduce the size of image datasets by 20% through smoothing and shrinking the size of images using color elements. The proposed algorithm reduces the learning time and, as a result, the computational load on hardware. The experiments conducted in this study show that the proposed method achieves effective learning with similar or slightly higher accuracy than the original dataset while reducing computational and time costs. This color-centric dataset construction method using image smoothing techniques can lead to more efficient learning on CNNs. This method can be applied in various applications, such as image classification and recognition, and can contribute to more efficient and cost-effective deep learning. This paper presents a promising approach to reducing the computational load and time costs associated with deep learning and provides meaningful results with limited data, enabling them to apply deep learning to a broader range of applications.

The Effect of Background on Object Recognition of Vision AI (비전 AI의 객체 인식에 배경이 미치는 영향)

  • Wang, In-Gook;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.127-128
    • /
    • 2023
  • The construction industry is increasingly adopting vision AI technologies to improve efficiency and safety management. However, the complex and dynamic nature of construction sites can pose challenges to the accuracy of vision AI models trained on datasets that do not consider the background. This study investigates the effect of background on object recognition for vision AI in construction sites by constructing a learning dataset and a test dataset with varying backgrounds. Frame scaffolding was chosen as the object of recognition due to its wide use, potential safety hazards, and difficulty in recognition. The experimental results showed that considering the background during model training significantly improved the accuracy of object recognition.

  • PDF

Validation of Semantic Segmentation Dataset for Autonomous Driving (승용자율주행을 위한 의미론적 분할 데이터셋 유효성 검증)

  • Gwak, Seoku;Na, Hoyong;Kim, Kyeong Su;Song, EunJi;Jeong, Seyoung;Lee, Kyewon;Jeong, Jihyun;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.104-109
    • /
    • 2022
  • For autonomous driving research using AI, datasets collected from road environments play an important role. In other countries, various datasets such as CityScapes, A2D2, and BDD have already been released, but datasets suitable for the domestic road environment still need to be provided. This paper analyzed and verified the dataset reflecting the Korean driving environment. In order to verify the training dataset, the class imbalance was confirmed by comparing the number of pixels and instances of the dataset. A similar A2D2 dataset was trained with the same deep learning model, ConvNeXt, to compare and verify the constructed dataset. IoU was compared for the same class between two datasets with ConvNeXt and mIoU was compared. In this paper, it was confirmed that the collected dataset reflecting the driving environment of Korea is suitable for learning.

Ontology BIM-based Knowledge Service Framework Architecture Development (온톨로지 BIM 기반 지식 서비스 프레임웍 아키텍처 개발)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.52-60
    • /
    • 2022
  • Recently, the demand for connection between various heterogeneous dataset and BIM as a construction data model hub is increasing. In the past, in order to connect model between BIM and heterogeneous dataset, related dataset was stored in the RDBMS, and the service was provided by programming a method to link with the BIM object. This approach causes problems such as the need to modify the database schema and business logic, and the migration of existing data when requirements change. This problem adversely affects the scalability, reusability, and maintainability of model information. This study proposes an ontology BIM-based knowledge service framework considering the connectivity and scalability between BIM and heterogeneous dataset. Through the proposed framework, ontology BIM mapping, semantic information query method for linking between knowledge-expressing dataset and BIM are presented. In addition, to identify the effectiveness of the proposed method, the prototype is developed. Also, the effectiveness and considerations of the ontology BIM-based knowledge service framework are derived.

A Study on Synthetic Dataset Generation Method for Maritime Traffic Situation Awareness (해상교통 상황인지 향상을 위한 합성 데이터셋 구축방안 연구)

  • Youngchae Lee;Sekil Park
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.69-80
    • /
    • 2023
  • Ship collision accidents not only cause loss of life and property damage, but also cause marine pollution and can become national disasters, so prevention is very important. Most of these ship collision accidents are caused by human factors due to the navigation officer's lack of vigilance and carelessness, and in many cases, they can be prevented through the support of a system that helps with situation awareness. Recently, artificial intelligence has been used to develop systems that help navigators recognize the situation, but the sea is very wide and deep, so it is difficult to secure maritime traffic datasets, which also makes it difficult to develop artificial intelligence models. In this paper, to solve these difficulties, we propose a method to build a dataset with characteristics similar to actual maritime traffic datasets. The proposed method uses segmentation and inpainting technologies to build a foreground and background dataset, and then applies compositing technology to create a synthetic dataset. Through prototype implementation and result analysis of the proposed method, it was confirmed that the proposed method is effective in overcoming the difficulties of dataset construction and complementing various scenes similar to reality.