• Title/Summary/Keyword: Dataset Augmentation

Search Result 109, Processing Time 0.027 seconds

Validation Data Augmentation for Improving the Grading Accuracy of Diabetic Macular Edema using Deep Learning (딥러닝을 이용한 당뇨성황반부종 등급 분류의 정확도 개선을 위한 검증 데이터 증강 기법)

  • Lee, Tae Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.48-54
    • /
    • 2019
  • This paper proposed a method of validation data augmentation for improving the grading accuracy of diabetic macular edema (DME) using deep learning. The data augmentation technique is basically applied in order to secure diversity of data by transforming one image to several images through random translation, rotation, scaling and reflection in preparation of input data of the deep neural network (DNN). In this paper, we apply this technique in the validation process of the trained DNN, and improve the grading accuracy by combining the classification results of the augmented images. To verify the effectiveness, 1,200 retinal images of Messidor dataset was divided into training and validation data at the ratio 7:3. By applying random augmentation to 359 validation data, $1.61{\pm}0.55%$ accuracy improvement was achieved in the case of six times augmentation (N=6). This simple method has shown that the accuracy can be improved in the N range from 2 to 6 with the correlation coefficient of 0.5667. Therefore, it is expected to help improve the diagnostic accuracy of DME with the grading information provided by the proposed DNN.

Classification of Raccoon dog and Raccoon with Transfer Learning and Data Augmentation (전이 학습과 데이터 증강을 이용한 너구리와 라쿤 분류)

  • Dong-Min Park;Yeong-Seok Jo;Seokwon Yeom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.34-41
    • /
    • 2023
  • In recent years, as the range of human activities has increased, the introduction of alien species has become frequent. Among them, raccoons have been designated as harmful animals since 2020. Raccoons are similar in size and shape to raccoon dogs, so they generally need to be distinguished in capturing them. To solve this problem, we use VGG19, ResNet152V2, InceptionV3, InceptionResNet and NASNet, which are CNN deep learning models specialized for image classification. The parameters to be used for learning are pre-trained with a large amount of data, ImageNet. In order to classify the raccoon and raccoon dog datasets as outward features of animals, the image was converted to grayscale and brightness was normalized. Augmentation methods were applied using left and right inversion, rotation, scaling, and shift to create sufficient data for transfer learning. The FCL consists of 1 layer for the non-augmented dataset while 4 layers for the augmented dataset. Comparing the accuracy of various augmented datasets, the performance increased as more augmentation methods were applied.

Hard Example Generation by Novel View Synthesis for 3-D Pose Estimation (3차원 자세 추정 기법의 성능 향상을 위한 임의 시점 합성 기반의 고난도 예제 생성)

  • Minji Kim;Sungchan Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • It is widely recognized that for 3D human pose estimation (HPE), dataset acquisition is expensive and the effectiveness of augmentation techniques of conventional visual recognition tasks is limited. We address these difficulties by presenting a simple but effective method that augments input images in terms of viewpoints when training a 3D human pose estimation (HPE) model. Our intuition is that meaningful variants of the input images for HPE could be obtained by viewing a human instance in the images from an arbitrary viewpoint different from that in the original images. The core idea is to synthesize new images that have self-occlusion and thus are difficult to predict at different viewpoints even with the same pose of the original example. We incorporate this idea into the training procedure of the 3D HPE model as an augmentation stage of the input samples. We show that a strategy for augmenting the synthesized example should be carefully designed in terms of the frequency of performing the augmentation and the selection of viewpoints for synthesizing the samples. To this end, we propose a new metric to measure the prediction difficulty of input images for 3D HPE in terms of the distance between corresponding keypoints on both sides of a human body. Extensive exploration of the space of augmentation probability choices and example selection according to the proposed distance metric leads to a performance gain of up to 6.2% on Human3.6M, the well-known pose estimation dataset.

An Improved Deep Learning Method for Animal Images (동물 이미지를 위한 향상된 딥러닝 학습)

  • Wang, Guangxing;Shin, Seong-Yoon;Shin, Kwang-Weong;Lee, Hyun-Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.123-124
    • /
    • 2019
  • This paper proposes an improved deep learning method based on small data sets for animal image classification. Firstly, we use a CNN to build a training model for small data sets, and use data augmentation to expand the data samples of the training set. Secondly, using the pre-trained network on large-scale datasets, such as VGG16, the bottleneck features in the small dataset are extracted and to be stored in two NumPy files as new training datasets and test datasets. Finally, training a fully connected network with the new datasets. In this paper, we use Kaggle famous Dogs vs Cats dataset as the experimental dataset, which is a two-category classification dataset.

  • PDF

GAN based Data Augmentation of Channel Data for the Application of RF Finger-printing in NFC (NFC에서 무선 핑거프린팅 기술 적용을 위한 GAN 기반 채널데이터 증강방안)

  • Lee, Woongsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1271-1274
    • /
    • 2021
  • RF fingerprinting based on deep learning (DL) has gained interests as a means to improve the security of near field communication (NFC) by allowing identification of NFC tags based on unique physical characteristics. To achieve high accuracy in the identification of NFC tags, it is crucial to utilize a large number of training data, however it is hard to collect such dataset in practice. In this study, we have provided new methodology to generate RF waveform from NFC tags, i.e., data augmentation, based on a conditional generative adversarial network (CGAN). By using the RF waveform of NFC tags which is collected from the testbed with software defined radio (SDR), we have confirmed that the realistic RF waveform can be generated through our proposed scheme.

Data augmentation technique based on image binarization for constructing large-scale datasets (대형 이미지 데이터셋 구축을 위한 이미지 이진화 기반 데이터 증강 기법)

  • Lee JuHyeok;Kim Mi Hui
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2023
  • Deep learning can solve various computer vision problems, but it requires a large dataset. Data augmentation technique based on image binarization for constructing large-scale datasets is proposed in this paper. By extracting features using image binarization and randomly placing the remaining pixels, new images are generated. The generated images showed similar quality to the original images and demonstrated excellent performance in deep learning models.

Token-Based Classification and Dataset Construction for Detecting Modified Profanity (변형된 비속어 탐지를 위한 토큰 기반의 분류 및 데이터셋)

  • Sungmin Ko;Youhyun Shin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.181-188
    • /
    • 2024
  • Traditional profanity detection methods have limitations in identifying intentionally altered profanities. This paper introduces a new method based on Named Entity Recognition, a subfield of Natural Language Processing. We developed a profanity detection technique using sequence labeling, for which we constructed a dataset by labeling some profanities in Korean malicious comments and conducted experiments. Additionally, to enhance the model's performance, we augmented the dataset by labeling parts of a Korean hate speech dataset using one of the large language models, ChatGPT, and conducted training. During this process, we confirmed that filtering the dataset created by the large language model by humans alone could improve performance. This suggests that human oversight is still necessary in the dataset augmentation process.

Robust Deep Age Estimation Method Using Artificially Generated Image Set

  • Jang, Jaeyoon;Jeon, Seung-Hyuk;Kim, Jaehong;Yoon, Hosub
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.643-651
    • /
    • 2017
  • Human age estimation is one of the key factors in the field of Human-Robot Interaction/Human-Computer Interaction (HRI/HCI). Owing to the development of deep-learning technologies, age recognition has recently been attempted. In general, however, deep learning techniques require a large-scale database, and for age learning with variations, a conventional database is insufficient. For this reason, we propose an age estimation method using artificially generated data. Image data are artificially generated through 3D information, thus solving the problem of shortage of training data, and helping with the training of the deep-learning technique. Augmentation using 3D has advantages over 2D because it creates new images with more information. We use a deep architecture as a pre-trained model, and improve the estimation capacity using artificially augmented training images. The deep architecture can outperform traditional estimation methods, and the improved method showed increased reliability. We have achieved state-of-the-art performance using the proposed method in the Morph-II dataset and have proven that the proposed method can be used effectively using the Adience dataset.

Generation of Dataset for Detection of Black Screen in Video Wall Controller (비디오 월 컨트롤러의 블랙 스크린 감지를 위한 데이터셋 생성)

  • Kim, Sung-jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.521-523
    • /
    • 2021
  • Data augmentation are techniques used to increase the amount of data by using small amount of existing data. With the spread of the Internet, we can easily obtain data. However, there are still certain industries, like medicine, where it is difficult to obtain data. The same is true for image data in which a black screen is displayed on video wall controller. Because it is rare that a black screen is displayed during operation, it is not easy to obtain an image with a black screen. We propose a DCGAN based architecture that generate dataset using a small amount of black screen image.

  • PDF

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.55-67
    • /
    • 2022
  • Sensor data can provide fault diagnosis for equipment. However, the cause analysis for fault results of equipment is not often provided. In this study, we propose an explainable convolutional neural network framework for the sensor-based time series classification model. We used sensor-based time series dataset, acquired from vehicles equipped with sensors, and the Wafer dataset, acquired from manufacturing process. Moreover, we used Cycle Signal dataset, acquired from real world mechanical equipment, and for Data augmentation methods, scaling and jittering were used to train our deep learning models. In addition, our proposed classification models are convolutional neural network based models, FCN, 1D-CNN, and ResNet, to compare evaluations for each model. Our experimental results show that the ResNet provides promising results in the context of time series classification with accuracy and F1 Score reaching 95%, improved by 3% compared to the previous study. Furthermore, we propose XAI methods, Class Activation Map and Layer Visualization, to interpret the experiment result. XAI methods can visualize the time series interval that shows important factors for sensor data classification.